942 resultados para Infrared spectral
Resumo:
The technique of optical pumping in polar molecules is the most efficient for Far-Infrared (FIR) laser generation, providing also a versatile and powerful tool for molecular spectroscopy in this spectral region. Methanol (CH3OH) and its isotopic varieties are the best media for optically pumped FIR laser, with over thousand lines observed, and the most widely used for investigations and applications. In this sense, it is important organize and make available catalogues of FIR laser lines as complete as possible. Since the last critical reviews of 1984 [1] on methanol and its isotopic varieties [2,3,4], over hundred papers have been published dealing with hundreds of new FIR laser lines. In 1992 a review of FIR laser lines from CH3OH was presented [5]. In this communication we extend this work to the other methanol isotopes, namely CH3OD, CD3OH, CD3OD, (CH3OH)-C-13, (CD3OH)-C-13, (CD3OD)-C-13, (CH3OH)-O-18, CH2DOH, CHD2OH and CH2DOD.
Resumo:
We report on spectral redistribution of the photoluminescence (PL) emission from the edge of thin-film planar waveguides of the conjugated polymer BEH-PPV [Poly(2,5-bis(2'-ethyl-hexyl)-1,4-phenylenevinylene] induced by self-absorption in the polymer film. The PL spectra present drastic changes and displace to longer wavelengths with increasing self-absorption. We observe an enhancement of the absolute PL intensity at longer wavelengths, which was interpreted as due to re-emission of self-absorbed photons. The significant efficiency for the PL re-emission suggests the use of self-absorption as a mechanism for tuning the emission into the near infrared.
Resumo:
In the study of physical, chemical, and mineralogical data related to the weathering of soils and the quantification of their properties, remote sensing constitutes an important technique that, in addition to conventional analyses, can contribute to soil survey. The objectives of this research were to characterize and differentiate soils developed from basaltic rocks that occur in the Parana state, Brazil and to quantify soil properties based on their spectral reflectance. These observations were used to verify the relationship between the soils and reflectance with regard to weathering, organic matter (OM), and forms of Fe. From the least to the most weathered soil, we used a Typic Argiudoll (Reddish Brunizem), Rhodudalf (Terra Roxa Estruturada), and Rhodic Hapludox (Very Dark Red Latosol). The spectral reflectances between 400 and 2500 nm were obtained in the laboratory from soil samples collected at two depth increments, 0- to 20- and 40- to 60-cm, using an Infra Red Intelligent Spectroradiometer (IRIS). Correlation, regression, and discriminant estimates were used in analyzing the soil and spectral data. Results of this study indicated that soils could be separated at the soil-type level based on reflectance intensity in various absorption bands. Soil collected in the 40- to 60-cm depth appeared to have higher reflectance intensities than those from the 0- to 20-cm depth. Removal of OM from soil samples promoted higher reflectance intensity in the entire spectrum. Amorphous and crystalline Fe influenced reflectance differently. Weathering of basaltic soils was correlated with alterations in the reflectance intensities and absorption features of the spectral curves. Multivariate analysis demonstrated that this technique was efficient in the estimation of clay, silt, kaolinite, crystalline Fe, amorphous Fe, and Mg through the use of reflected energy of the soils.
Resumo:
Polyols are widely used as sugar substitutes and provide texture to foods. Guar gum has many applications in food industry such as increasing product viscosity and improving texture. Knowledge of rheological properties of gum/polyol systems is important to permit replacing sugar while maintaining product texture. In this work, rheological properties of 0.1, 0.5 and 1 g/100 g guar solutions containing 10 and 40 g/100 g of maltitol, sorbitol, or xylitol were studied. The behavior of these mixtures was evaluated by steady and oscillatory shear measurements, and after a freezing/thawing cycle. Apparent viscosity of guar solutions increased with addition of polyols and with the increase in their concentrations, except for 40 g/100 g sorbitol addition to 1 g/100 g guar gum, in which the apparent viscosity decreased. Addition of polyols also increased the dynamic moduli of the systems. In mixtures of guar with 40 g/100 g polyol, the phase angle (δ) was below unity, but was dependent on frequency, which is characteristic of concentrated solutions with a certain degree of structuring. FTIR spectroscopy was studied to provide information on possible interactions between guar gum and polyols. Analyses carried out after freezing/thawing showed no changes in the viscoelastic behavior of the solutions. © 2013 Elsevier Ltd.
Resumo:
Pós-graduação em Biopatologia Bucal - ICT
Resumo:
A numerical study of As2S3 Raman fiber lasers is carried out to show their potential for the entire coverage of the 3–4-m spectral band. Experimental results are first obtained from such a laser operated under controlled conditions in order to set the fiber parameters (i.e., gain and attenuation coefficients) to be used in the numerical model. An exhaustive numerical analysis is then performed to establish the conditions for optimum lasing performances over the entire 3–4-m spectral band.
Resumo:
We report on infrared supercontinuum (SC) generation through laser filamentation and subsequent nonlinear propagation in a step-index As2S3 fiber. The 100 μm core and high-purity As2S3 fiber used exhibit zero-dispersion wavelength around 4.5 μm, a mid-infrared background loss of 0.2dB/m, and a maximum loss of only 0.55dB/m at the S-H absorption peak around 4.05 μm. When pumping with ultrashort laser pulses slightly above the S-H absorption band, broadband infrared supercontinua were generated with a 20 dB spectral flatness spanning from 1.5 up to 7 μm. The efficiency and spectral shape of the SC produced by ultrashort pulses in large-core As2S3 fiber are mainly determined by its dispersion, the S-H contaminant absorption, and the mid-infrared nonlinear absorption.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
The leaf area index (LAI) is a key characteristic of forest ecosystems. Estimations of LAI from satellite images generally rely on spectral vegetation indices (SVIs) or radiative transfer model (RTM) inversions. We have developed a new and precise method suitable for practical application, consisting of building a species-specific SVI that is best-suited to both sensor and vegetation characteristics. Such an SVI requires calibration on a large number of representative vegetation conditions. We developed a two-step approach: (1) estimation of LAI on a subset of satellite data through RTM inversion; and (2) the calibration of a vegetation index on these estimated LAI. We applied this methodology to Eucalyptus plantations which have highly variable LAI in time and space. Previous results showed that an RTM inversion of Moderate Resolution Imaging Spectroradiometer (MODIS) near-infrared and red reflectance allowed good retrieval performance (R-2 = 0.80, RMSE = 0.41), but was computationally difficult. Here, the RTM results were used to calibrate a dedicated vegetation index (called "EucVI") which gave similar LAI retrieval results but in a simpler way. The R-2 of the regression between measured and EucVI-simulated LAI values on a validation dataset was 0.68, and the RMSE was 0.49. The additional use of stand age and day of year in the SVI equation slightly increased the performance of the index (R-2 = 0.77 and RMSE = 0.41). This simple index opens the way to an easily applicable retrieval of Eucalyptus LAI from MODIS data, which could be used in an operational way.
Resumo:
Solar infrared colors provide powerful constraints on the stellar effective temperature scale, but they must be measured with both accuracy and precision in order to do so. We fulfill this requirement by using line-depth ratios to derive in a model-independent way the infrared colors of the Sun, and we use the latter to test the zero point of the Casagrande et al. effective temperature scale, confirming its accuracy. Solar colors in the widely used Two Micron All Sky Survey (2MASS) JHK(s) and WISE W1-4 systems are provided: (V - J)(circle dot) = 1.198, (V - H)(circle dot) = 1.484, (V - K-s)(circle dot) = 1.560, (J - H)(circle dot) = 0.286, (J - K-s)(circle dot) = 0.362, (H - K-s)(circle dot) = 0.076, (V - W1)(circle dot) = 1.608, (V - W2)(circle dot) = 1.563, (V - W3)(circle dot) = 1.552, and (V - W4)(circle dot) = 1.604. A cross-check of the effective temperatures derived implementing 2MASS or WISE magnitudes in the infrared flux method confirms that the absolute calibration of the two systems agrees within the errors, possibly suggesting a 1% offset between the two, thus validating extant near-and mid-infrared absolute calibrations. While 2MASS magnitudes are usually well suited to derive T-eff, we find that a number of bright, solar-like stars exhibit anomalous WISE colors. In most cases, this effect is spurious and can be attributed to lower-quality measurements, although for a couple of objects (3%+/- 2% of the total sample) it might be real, and may hint at the presence of warm/hot debris disks.
Resumo:
This Phd thesis was entirely developed at the Telescopio Nazionale Galileo (TNG, Roque de los Muchachos, La Palma Canary Islands) with the aim of designing, developing and implementing a new Graphical User Interface (GUI) for the Near Infrared Camera Spectrometer (NICS) installed on the Nasmyth A of the telescope. The idea of a new GUI for NICS has risen for optimizing the astronomers work through a set of powerful tools not present in the existing GUI, such as the possibility to move automatically, an object on the slit or do a very preliminary images analysis and spectra extraction. The new GUI also provides a wide and versatile image display, an automatic procedure to find out the astronomical objects and a facility for the automatic image crosstalk correction. In order to test the overall correct functioning of the new GUI for NICS, and providing some information on the atmospheric extinction at the TNG site, two telluric standard stars have been spectroscopically observed within some engineering time, namely Hip031303 and Hip031567. The used NICS set-up is as follows: Large Field (0.25'' /pixel) mode, 0.5'' slit and spectral dispersion through the AMICI prism (R~100), and the higher resolution (R~1000) JH and HK grisms.
Resumo:
Introduction: As a previous study revealed, arts speech therapy (AST) affects cardiorespiratory interaction [1]. The aim of the present study was to investigate whether AST also has effects on brain oxygenation and hemodynamics measured non-invasively using near-infrared spectroscopy (NIRS). Material and methods: NIRS measurements were performed on 17 subjects (8 men and 9 women, mean age: 35.6 ± 12.7 y) during AST. Each measurement lasted 35 min, comprising 8 min pre-baseline, 10 min recitation and 20 min post-baseline. For each subject, measurements were performed for three different AST recitation tasks (recitation of alliterative, hexameter and prose verse). Relative concentration changes of oxyhemoglobin (Δ[O2Hb]) and deoxyhemoglobin (Δ[HHb]) as well as the tissue oxygenation index (TOI) were measured using a Hamamatsu NIRO300 NIRS device and a sensor placed on the subjects forehead. Movement artifacts were removed using a novel method [2]. Statistical analysis (Wilcoxon test) was applied to the data to investigate (i) if the recitation causes changes in the median values and/or in the Mayer wave power spectral density (MW-PSD, range: 0.07–0.13 Hz) of Δ[O2Hb], Δ[HHb] or TOI, and (ii) if these changes vary between the 3 recitation forms. Results: For all three recitation styles a significant (p < 0.05) decrease in Δ[O2Hb] and TOI was found, indicating a decrease in blood flow. These decreases did not vary significantly between the three styles. MW-PSD increased significantly for Δ[O2Hb] when reciting the hexameter and prose verse, and for Δ[HHb] and TOI when reciting alliterations and hexameter, representing an increase in Mayer waves. The MW-PSD increase for Δ[O2Hb] was significantly larger for the hexameter verse compared to alliterative and prose verse Conclusion: The study showed that AST affects brain hemodynamics (oxygenation, blood flow and Mayer waves). Recitation caused a significant decrease in cerebral blood flow for all recitation styles as well as an increase in Mayer waves, particularly for the hexameter, which may indicate a sympathetic activation. References 1. D. Cysarz, D. von Bonin, H. Lackner, P. Heusser, M. Moser, H. Bettermann. Am J Physiol Heart Circ Physiol, 287 (2) (2004), pp. H579–H587 2. F. Scholkmann, S. Spichtig, T. Muehlemann, M. Wolf. Physiol Meas, 31 (5) (2010), pp. 649–662
Resumo:
We have measured high-precision infrared parallaxes with the Canada-France-Hawaii Telescope for a large sample of candidate young (approximate to 10-100 Myr) and intermediate-age (approximate to 100-600 Myr) ultracool dwarfs, with spectral types ranging from M8 to T2.5. These objects are compelling benchmarks for substellar evolution and ultracool atmospheres at lower surface gravities (i.e., masses) than most of the field population. We find that the absolute magnitudes of our young sample can be systematically offset from ordinary (older) field dwarfs, with the young late-M objects being brighter and the young/dusty mid-L (L3-L6.5) objects being fainter, especially at J band. Thus, we conclude the "underluminosity" of the young planetary-mass companions HR 8799b and 2MASS J1207-39b compared to field dwarfs is also manifested in young free-floating brown dwarfs, though the effect is not as extreme. At the same time, some young objects over the full spectral type range of our sample are similar to field objects, and thus a simple correspondence between youth and magnitude offset relative to the field population appears to be lacking. Comparing the kinematics of our sample to nearby stellar associations and moving groups, we identify several new moving group members, including the first free-floating L dwarf in the AB Dor moving group, 2MASS J0355+11. Altogether, the effects of surface gravity (age) and dust content on the magnitudes and colors of substellar objects appear to be degenerate. (C) 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim
Resumo:
We present a near-infrared (0.9-2.4 mu m) spectroscopic study of 73 field ultracool dwarfs having spectroscopic and/or kinematic evidence of youth (approximate to 10-300 Myr). Our sample is composed of 48 low-resolution (R approximate to 100) spectra and 41 moderate-resolution spectra (R greater than or similar to 750-2000). First, we establish a method for spectral typing M5-L7 dwarfs at near-IR wavelengths that is independent of gravity. We find that both visual and index-based classification in the near-IR provides consistent spectral types with optical spectral types, though with a small systematic offset in the case of visual classification at J and K band. Second, we examine features in the spectra of similar to 10 Myr ultracool dwarfs to define a set of gravity-sensitive indices based on FeH, VO, Ki, Nai, and H-band continuum shape. We then create an index-based method for classifying the gravities of M6-L5 dwarfs that provides consistent results with gravity classifications from optical spectroscopy. Our index-based classification can distinguish between young and dusty objects. Guided by the resulting classifications, we propose a set of low-gravity spectral standards for the near-IR. Finally, we estimate the ages corresponding to our gravity classifications.
Resumo:
Arts speech therapy (AST) is a therapeutic method within complementary medicine and has been practiced for decades for various medical conditions. It comprises listening and the recitation of different forms of speech exercises under the guidance of a licensed speech therapist. The aim of our study was to noninvasively investigate whether different types of recitation influence hemodynamics and oxygenation in the brain and skeletal leg muscle using near-infrared spectroscopy (NIRS). Seventeen healthy volunteers (eight men and nine women, mean age ± standard deviation 35.6 ± 12.7 years) were enrolled in the study. Each subject was measured three times on different days with the different types of recitation: hexameter, alliteration, and prose verse. Before, during, and after recitation, relative concentration changes of oxyhemoglobin (Δ[O2Hb]), deoxyhemoglobin (Δ[HHb]), total hemoglobin (Δ[tHb]), and tissue oxygenation saturation (StO2) were measured in the brain and skeletal leg muscle using a NIRS device. The study was performed with a randomized crossover design. Significant concentration changes were found during recitation of all verses, with mainly a decrease in Δ[O2Hb] and ΔStO2 in the brain, and an increase in Δ[O2Hb] and Δ[tHb] in the leg muscle during recitation. After the recitations, significant changes were mainly increases of Δ[HHb] and Δ[tHb] in the calf muscle. The Mayer wave spectral power (MWP) was also significantly affected, i.e., mainly the MWP of the Δ[O2Hb] and Δ[tHb] increased in the brain during recitation of hexameter and prose verse. The changes in MWP were also significantly different between hexameter and alliteration, and hexameter and prose. Possible physiological explanations for these changes are discussed. A probable reason is a different effect of recitations on the sympathetic nervous system. In conclusion, these changes show that AST has relevant effects on the hemodynamics and oxygenation of the brain and muscle.