901 resultados para Information Retrieval, Weblogs, Decision Support


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Uncertainty contributes a major part in the accuracy of a decision-making process while its inconsistency is always difficult to be solved by existing decision-making tools. Entropy has been proved to be useful to evaluate the inconsistency of uncertainty among different respondents. The study demonstrates an entropy-based financial decision support system called e-FDSS. This integrated system provides decision support to evaluate attributes (funding options and multiple risks) available in projects. Fuzzy logic theory is included in the system to deal with the qualitative aspect of these options and risks. An adaptive genetic algorithm (AGA) is also employed to solve the decision algorithm in the system in order to provide optimal and consistent rates to these attributes. Seven simplified and parallel projects from a Hong Kong construction small and medium enterprise (SME) were assessed to evaluate the system. The result shows that the system calculates risk adjusted discount rates (RADR) of projects in an objective way. These rates discount project cash flow impartially. Inconsistency of uncertainty is also successfully evaluated by the use of the entropy method. Finally, the system identifies the favourable funding options that are managed by a scheme called SME Loan Guarantee Scheme (SGS). Based on these results, resource allocation could then be optimized and the best time to start a new project could also be identified throughout the overall project life cycle.

Relevância:

100.00% 100.00%

Publicador:

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In any data mining applications, automated text and text and image retrieval of information is needed. This becomes essential with the growth of the Internet and digital libraries. Our approach is based on the latent semantic indexing (LSI) and the corresponding term-by-document matrix suggested by Berry and his co-authors. Instead of using deterministic methods to find the required number of first "k" singular triplets, we propose a stochastic approach. First, we use Monte Carlo method to sample and to build much smaller size term-by-document matrix (e.g. we build k x k matrix) from where we then find the first "k" triplets using standard deterministic methods. Second, we investigate how we can reduce the problem to finding the "k"-largest eigenvalues using parallel Monte Carlo methods. We apply these methods to the initial matrix and also to the reduced one. The algorithms are running on a cluster of workstations under MPI and results of the experiments arising in textual retrieval of Web documents as well as comparison of the stochastic methods proposed are presented. (C) 2003 IMACS. Published by Elsevier Science B.V. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Background: This study was carried out as part of a European Union funded project (PharmDIS-e+), to develop and evaluate software aimed at assisting physicians with drug dosing. A drug that causes particular problems with drug dosing in primary care is digoxin because of its narrow therapeutic range and low therapeutic index. Objectives: To determine (i) accuracy of the PharmDIS-e+ software for predicting serum digoxin levels in patients who are taking this drug regularly; (ii) whether there are statistically significant differences between predicted digoxin levels and those measured by a laboratory and (iii) whether there are differences between doses prescribed by general practitioners and those suggested by the program. Methods: We needed 45 patients to have 95% Power to reject the null hypothesis that the mean serum digoxin concentration was within 10% of the mean predicted digoxin concentration. Patients were recruited from two general practices and had been taking digoxin for at least 4 months. Exclusion criteria were dementia, low adherence to digoxin and use of other medications known to interact to a clinically important extent with digoxin. Results: Forty-five patients were recruited. There was a correlation of 0·65 between measured and predicted digoxin concentrations (P < 0·001). The mean difference was 0·12 μg/L (SD 0·26; 95% CI 0·04, 0·19, P = 0·005). Forty-seven per cent of the patients were prescribed the same dose as recommended by the software, 44% were prescribed a higher dose and 9% a lower dose than recommended. Conclusion: PharmDIS-e+ software was able to predict serum digoxin levels with acceptable accuracy in most patients.