155 resultados para Imatinib Mesylate


Relevância:

10.00% 10.00%

Publicador:

Resumo:

Gemcitabine is a highly potent chemotherapeutic nucleoside agent used in the treatment of several cancers and solid tumors. However, it is therapeutically limitated because of toxicity to normal cells and its rapid intracellular deamination by cytidine deaminase into the inactive uracil derivative. Modification at the 4-(N) position of gemcitabine's exocyclic amine to an -amide functionality is a well reported prodrug strategy which has been that confers a resistance to intracellular deamination while also altering pharmacokinetics of the parent drug. Coupling of gemcitabine to carboxylic acids with varying terminal moieties afforded the 4-N-alkanoylgemcitabines whereas reaction of 4-N-tosylgemcitabine with the corresponding alkyl amines gave the 4-N-alkylgemcitabines. The 4-N-alkanoyl and 4-N-alkyl gemcitabine analogues with a terminal hydroxyl group on the 4-N-alkanoyl or 4-N-alkyl chain were efficiently fluorinated either with diethylaminosulfur trifluoride or under conditions that are compatible with the synthetic protocols for 18F labeling, such as displacement of the corresponding mesylate with KF/Kryptofix 2.2.2. The 4-N-alkanoylgemcitabine analogues displayed potent cytostatic activities against murine and human tumor cell lines with 50% inhibitory concentration (IC50) values in the range of low nM, whereas cytotoxicity of the 4-N-alkylgemcitabine derivatives were in the low to modest µM range. The cytostatic activity of the 4-N-alkanoylgemcitabines was reduced by several orders of magnitude in the 2'-deoxycytidine kinase (dCK)-deficient CEM/dCK- cell line while the 4-N-alkylgemcitabines were only lowered by 2-5 times. None of the 4-N-modified gemcitabines were found to be substrates for cytosolic dCK, however all were found to inhibit DNA synthesis. As such, the 4-N-alkanoyl gemcitabine derivatives likely need to be converted to gemcitabine prior to achieving their significant cytostatic potential, whereas the 4-N-alkylgemcitabines reach their modest activity without "measurable" conversion to gemcitabine. Thus, the 4-N-alkylgemcitabines provide valuable insight on the metabolism of 4-N-modified gemcitabine prodrugs.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Although tyrosine kinase inhibitors (TKIs) such as imatinib have transformed chronic myelogenous leukemia (CML) into a chronic condition, these therapies are not curative in the majority of cases. Most patients must continue TKI therapy indefinitely, a requirement that is both expensive and that compromises a patient's quality of life. While TKIs are known to reduce leukemic cells' proliferative capacity and to induce apoptosis, their effects on leukemic stem cells, the immune system, and the microenvironment are not fully understood. A more complete understanding of their global therapeutic effects would help us to identify any limitations of TKI monotherapy and to address these issues through novel combination therapies. Mathematical models are a complementary tool to experimental and clinical data that can provide valuable insights into the underlying mechanisms of TKI therapy. Previous modeling efforts have focused on CML patients who show biphasic and triphasic exponential declines in BCR-ABL ratio during therapy. However, our patient data indicates that many patients treated with TKIs show fluctuations in BCR-ABL ratio yet are able to achieve durable remissions. To investigate these fluctuations, we construct a mathematical model that integrates CML with a patient's autologous immune response to the disease. In our model, we define an immune window, which is an intermediate range of leukemic concentrations that lead to an effective immune response against CML. While small leukemic concentrations provide insufficient stimulus, large leukemic concentrations actively suppress a patient's immune system, thus limiting it's ability to respond. Our patient data and modeling results suggest that at diagnosis, a patient's high leukemic concentration is able to suppress their immune system. TKI therapy drives the leukemic population into the immune window, allowing the patient's immune cells to expand and eventually mount an efficient response against the residual CML. This response drives the leukemic population below the immune window, causing the immune population to contract and allowing the leukemia to partially recover. The leukemia eventually reenters the immune window, thus stimulating a sequence of weaker immune responses as the two populations approach equilibrium. We hypothesize that a patient's autologous immune response to CML may explain the fluctuations in BCR-ABL ratio that are regularly seen during TKI therapy. These fluctuations may serve as a signature of a patient's individual immune response to CML. By applying our modeling framework to patient data, we are able to construct an immune profile that can then be used to propose patient-specific combination therapies aimed at further reducing a patient's leukemic burden. Our characterization of a patient's anti-leukemia immune response may be especially valuable in the study of drug resistance, treatment cessation, and combination therapy.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Partial funding for open access provided by the UMD Libraries' Open Access Publishing Fund.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Dissertação de Mestrado, Biologia Marinha, Faculdade de Ciências e Tecnologias, Universidade do Algarve, 2014

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Ionic liquids (ILs) are solvents with numerous properties, which have been recently used for enzyme catalysis. In this work, five different ILs based on primary, tertiary, and quaternary ammonium cations coupled with mesylate and propionate anions were used as media for hydrolysis by the industrially relevant enzyme Thermomyces lanuginosus lipase (TLL). We correlated the TLL activity with various key IL and IL-water properties, including ion concentration, water activity (aw), kosmotropicity, hydrogen-bond basicity (β), and pH. The ion concentration was associated with aw, and the molar ratio of water/IL 5:1 (aw≈0.6) was found to be the threshold for assured TLL activity. Triethylammonium mesylate was the best IL owing to its kosmotropicity and ideal intrinsic β. The pH of IL-water mixtures is a key parameter related to the conformational change of TLL. We demonstrated the pH effect of the IL-water mixtures can be overcome by buffering, and the buffered system displayed the greatest activity.