995 resultados para Image interpolation
Resumo:
Health care interventions in the area of body image disturbance and eating disorders largely involve individual treatment approaches, while prevention and health promotion are relatively underexplored. A review of health promotion activities in the area of body image in Australia revealed three programmes, the most extensive and longest standing having been established in 1992. The aims of this programme are to reduce body image dissatisfaction and inappropriate eating behaviour, especially among women. Because health promotion is concerned with the social aspects of health, it was hypothesized by the authors that a social understanding of body image and eating disorders might be advanced in a health promotion setting and reflected in the approach to practice. In order to examine approaches to body image in health promotion, 10 health professionals responsible for the design and management of this programme participated in a series of semi-structured interviews between 1997 and 2000. Three discursive themes were evident in health workers' explanations of body image problems: (1) cognitive-behavioural themes; (2) gender themes; and (3) socio-cultural themes. While body image problems were constructed as psychological problems that are particularly experienced by women, their origins were largely conceived to be socio-cultural. The implications of these constructions are critically discussed in terms of the approach to health promotion used in this programme.
Resumo:
This paper presents an alternative approach to image segmentation by using the spatial distribution of edge pixels as opposed to pixel intensities. The segmentation is achieved by a multi-layered approach and is intended to find suitable landing areas for an aircraft emergency landing. We combine standard techniques (edge detectors) with novel developed algorithms (line expansion and geometry test) to design an original segmentation algorithm. Our approach removes the dependency on environmental factors that traditionally influence lighting conditions, which in turn have negative impact on pixel-based segmentation techniques. We present test outcomes on realistic visual data collected from an aircraft, reporting on preliminary feedback about the performance of the detection. We demonstrate consistent performances over 97% detection rate.
Resumo:
The rapid growth of visual information on Web has led to immense interest in multimedia information retrieval (MIR). While advancement in MIR systems has achieved some success in specific domains, particularly the content-based approaches, general Web users still struggle to find the images they want. Despite the success in content-based object recognition or concept extraction, the major problem in current Web image searching remains in the querying process. Since most online users only express their needs in semantic terms or objects, systems that utilize visual features (e.g., color or texture) to search images create a semantic gap which hinders general users from fully expressing their needs. In addition, query-by-example (QBE) retrieval imposes extra obstacles for exploratory search because users may not always have the representative image at hand or in mind when starting a search (i.e. the page zero problem). As a result, the majority of current online image search engines (e.g., Google, Yahoo, and Flickr) still primarily use textual queries to search. The problem with query-based retrieval systems is that they only capture users’ information need in terms of formal queries;; the implicit and abstract parts of users’ information needs are inevitably overlooked. Hence, users often struggle to formulate queries that best represent their needs, and some compromises have to be made. Studies of Web search logs suggest that multimedia searches are more difficult than textual Web searches, and Web image searching is the most difficult compared to video or audio searches. Hence, online users need to put in more effort when searching multimedia contents, especially for image searches. Most interactions in Web image searching occur during query reformulation. While log analysis provides intriguing views on how the majority of users search, their search needs or motivations are ultimately neglected. User studies on image searching have attempted to understand users’ search contexts in terms of users’ background (e.g., knowledge, profession, motivation for search and task types) and the search outcomes (e.g., use of retrieved images, search performance). However, these studies typically focused on particular domains with a selective group of professional users. General users’ Web image searching contexts and behaviors are little understood although they represent the majority of online image searching activities nowadays. We argue that only by understanding Web image users’ contexts can the current Web search engines further improve their usefulness and provide more efficient searches. In order to understand users’ search contexts, a user study was conducted based on university students’ Web image searching in News, Travel, and commercial Product domains. The three search domains were deliberately chosen to reflect image users’ interests in people, time, event, location, and objects. We investigated participants’ Web image searching behavior, with the focus on query reformulation and search strategies. Participants’ search contexts such as their search background, motivation for search, and search outcomes were gathered by questionnaires. The searching activity was recorded with participants’ think aloud data for analyzing significant search patterns. The relationships between participants’ search contexts and corresponding search strategies were discovered by Grounded Theory approach. Our key findings include the following aspects: - Effects of users' interactive intents on query reformulation patterns and search strategies - Effects of task domain on task specificity and task difficulty, as well as on some specific searching behaviors - Effects of searching experience on result expansion strategies A contextual image searching model was constructed based on these findings. The model helped us understand Web image searching from user perspective, and introduced a context-aware searching paradigm for current retrieval systems. A query recommendation tool was also developed to demonstrate how users’ query reformulation contexts can potentially contribute to more efficient searching.
Resumo:
Robust hashing is an emerging field that can be used to hash certain data types in applications unsuitable for traditional cryptographic hashing methods. Traditional hashing functions have been used extensively for data/message integrity, data/message authentication, efficient file identification and password verification. These applications are possible because the hashing process is compressive, allowing for efficient comparisons in the hash domain but non-invertible meaning hashes can be used without revealing the original data. These techniques were developed with deterministic (non-changing) inputs such as files and passwords. For such data types a 1-bit or one character change can be significant, as a result the hashing process is sensitive to any change in the input. Unfortunately, there are certain applications where input data are not perfectly deterministic and minor changes cannot be avoided. Digital images and biometric features are two types of data where such changes exist but do not alter the meaning or appearance of the input. For such data types cryptographic hash functions cannot be usefully applied. In light of this, robust hashing has been developed as an alternative to cryptographic hashing and is designed to be robust to minor changes in the input. Although similar in name, robust hashing is fundamentally different from cryptographic hashing. Current robust hashing techniques are not based on cryptographic methods, but instead on pattern recognition techniques. Modern robust hashing algorithms consist of feature extraction followed by a randomization stage that introduces non-invertibility and compression, followed by quantization and binary encoding to produce a binary hash output. In order to preserve robustness of the extracted features, most randomization methods are linear and this is detrimental to the security aspects required of hash functions. Furthermore, the quantization and encoding stages used to binarize real-valued features requires the learning of appropriate quantization thresholds. How these thresholds are learnt has an important effect on hashing accuracy and the mere presence of such thresholds are a source of information leakage that can reduce hashing security. This dissertation outlines a systematic investigation of the quantization and encoding stages of robust hash functions. While existing literature has focused on the importance of quantization scheme, this research is the first to emphasise the importance of the quantizer training on both hashing accuracy and hashing security. The quantizer training process is presented in a statistical framework which allows a theoretical analysis of the effects of quantizer training on hashing performance. This is experimentally verified using a number of baseline robust image hashing algorithms over a large database of real world images. This dissertation also proposes a new randomization method for robust image hashing based on Higher Order Spectra (HOS) and Radon projections. The method is non-linear and this is an essential requirement for non-invertibility. The method is also designed to produce features more suited for quantization and encoding. The system can operate without the need for quantizer training, is more easily encoded and displays improved hashing performance when compared to existing robust image hashing algorithms. The dissertation also shows how the HOS method can be adapted to work with biometric features obtained from 2D and 3D face images.
Resumo:
Examining the evolution of British and Australian policing, this comparative review of the literature considers the historical underpinnings of policing in these two countries and the impact of community legitimacy derived from the early concepts of policing by consent. Using the August 2011 disorder in Britain as a lens, this paper considers whether, in striving to maintain community confidence, undue emphasis is placed on the police's public image at the expense of community safety. Examining the path of policing reform, the impact of bureaucracy on policing and the evolving debate surrounding police performance, this review suggests that, while largely delivering on the ideal of an ethical and strong police force, a preoccupation with self-image may in fact result in tarnishing the very thing British and Australian police forces strive to achieve – their standing with the public. This paper advocates for a more realistic goal of gaining public respect rather than affection in order to achieve the difficult balance between maintaining trust and respect as an approachable, ethical entity providing firm, confident policing in this ever-evolving, modern society.
Resumo:
Globalised communication in society today is characterised by multimodal forms of meaning making in a context of increased cultural and linguistic diversity, calling for the teaching of multiliteracies. This transformation requires the development of a new metalanguage or language of description for the burgeoning and hybridised variety of text forms associated with information and multimedia technologies. To continue to teach to a narrow band of print-based genres, grammars, and skills is to ignore the reality of textual practices outside of schools. This paper draws from classroom research in a multiliteracies classroom to provide a multimodal analysis of a claymation movie. The significance of the paper is the synthesis of a multimodal metalanguage for teachers and students to describe the features of work in the kineikonic (moving image) mode.
Resumo:
This thesis examines the characteristics of anthropometry and body composition in Indonesian adults and some of the risk factors including body image, eating behaviours, and physical activity. Examination on body image, eating behaviours, and physical activity demonstrates significant correlations with anthropometry and body composition in Indonesian adults. The study also identified body image distortion in some of the participants and provides suggestions for intervention development addressed to the groups of participants which have been identified as having a distorted body image.
Resumo:
Researchers examined the sun-protective intentions and behavior of young, Caucasian, Australian sportswomen aged between 17 and 35 years (N = 100). The study adopted a 2 x 2 experimental design, comparing group norms (supportive vs. non-supportive) and image norms (tanned vs. pale) related to sun protection and taking into account group identification with friends and peers in the sport. While no significant findings emerged involving image norms, regression analyses revealed a significant two-way interaction for group norm x identification on recreational sportswomen's intentions to engage in sun protection in the next fortnight. Participants identifying strongly with their group had stronger intentions to engage in sun protection when exposed to a norm reflecting fellow recreational sportswomen engaging in sun-protective actions in comparison to those exposed to a non-supportive group. In addition, while prior intentions to engage in sun protection were not significantly related to sun-protection behavior, post-manipulation intentions after exposure to the sun-protective information that was provided were significantly related to follow-up behavior. Overall, the findings supported the importance of group-based social influences, rather than tanned media images, on sun-protective decisions among young recreational sportswomen and provided a targeted source for intervention strategies encouraging sun safety among this at-risk group for repeated sun exposure.
Resumo:
We propose a computationally efficient image border pixel based watermark embedding scheme for medical images. We considered the border pixels of a medical image as RONI (region of non-interest), since those pixels have no or little interest to doctors and medical professionals irrespective of the image modalities. Although RONI is used for embedding, our proposed scheme still keeps distortion at a minimum level in the embedding region using the optimum number of least significant bit-planes for the border pixels. All these not only ensure that a watermarked image is safe for diagnosis, but also help minimize the legal and ethical concerns of altering all pixels of medical images in any manner (e.g, reversible or irreversible). The proposed scheme avoids the need for RONI segmentation, which incurs capacity and computational overheads. The performance of the proposed scheme has been compared with a relevant scheme in terms of embedding capacity, image perceptual quality (measured by SSIM and PSNR), and computational efficiency. Our experimental results show that the proposed scheme is computationally efficient, offers an image-content-independent embedding capacity, and maintains a good image quality
Resumo:
Distributed Wireless Smart Camera (DWSC) network is a special type of Wireless Sensor Network (WSN) that processes captured images in a distributed manner. While image processing on DWSCs sees a great potential for growth, with its applications possessing a vast practical application domain such as security surveillance and health care, it suffers from tremendous constraints. In addition to the limitations of conventional WSNs, image processing on DWSCs requires more computational power, bandwidth and energy that presents significant challenges for large scale deployments. This dissertation has developed a number of algorithms that are highly scalable, portable, energy efficient and performance efficient, with considerations of practical constraints imposed by the hardware and the nature of WSN. More specifically, these algorithms tackle the problems of multi-object tracking and localisation in distributed wireless smart camera net- works and optimal camera configuration determination. Addressing the first problem of multi-object tracking and localisation requires solving a large array of sub-problems. The sub-problems that are discussed in this dissertation are calibration of internal parameters, multi-camera calibration for localisation and object handover for tracking. These topics have been covered extensively in computer vision literatures, however new algorithms must be invented to accommodate the various constraints introduced and required by the DWSC platform. A technique has been developed for the automatic calibration of low-cost cameras which are assumed to be restricted in their freedom of movement to either pan or tilt movements. Camera internal parameters, including focal length, principal point, lens distortion parameter and the angle and axis of rotation, can be recovered from a minimum set of two images of the camera, provided that the axis of rotation between the two images goes through the camera's optical centre and is parallel to either the vertical (panning) or horizontal (tilting) axis of the image. For object localisation, a novel approach has been developed for the calibration of a network of non-overlapping DWSCs in terms of their ground plane homographies, which can then be used for localising objects. In the proposed approach, a robot travels through the camera network while updating its position in a global coordinate frame, which it broadcasts to the cameras. The cameras use this, along with the image plane location of the robot, to compute a mapping from their image planes to the global coordinate frame. This is combined with an occupancy map generated by the robot during the mapping process to localised objects moving within the network. In addition, to deal with the problem of object handover between DWSCs of non-overlapping fields of view, a highly-scalable, distributed protocol has been designed. Cameras that follow the proposed protocol transmit object descriptions to a selected set of neighbours that are determined using a predictive forwarding strategy. The received descriptions are then matched at the subsequent camera on the object's path using a probability maximisation process with locally generated descriptions. The second problem of camera placement emerges naturally when these pervasive devices are put into real use. The locations, orientations, lens types etc. of the cameras must be chosen in a way that the utility of the network is maximised (e.g. maximum coverage) while user requirements are met. To deal with this, a statistical formulation of the problem of determining optimal camera configurations has been introduced and a Trans-Dimensional Simulated Annealing (TDSA) algorithm has been proposed to effectively solve the problem.
Resumo:
Highly sensitive infrared cameras can produce high-resolution diagnostic images of the temperature and vascular changes of breasts. Wavelet transform based features are suitable in extracting the texture difference information of these images due to their scale-space decomposition. The objective of this study is to investigate the potential of extracted features in differentiating between breast lesions by comparing the two corresponding pectoral regions of two breast thermograms. The pectoral regions of breastsare important because near 50% of all breast cancer is located in this region. In this study, the pectoral region of the left breast is selected. Then the corresponding pectoral region of the right breast is identified. Texture features based on the first and the second sets of statistics are extracted from wavelet decomposed images of the pectoral regions of two breast thermograms. Principal component analysis is used to reduce dimension and an Adaboost classifier to evaluate classification performance. A number of different wavelet features are compared and it is shown that complex non-separable 2D discrete wavelet transform features perform better than their real separable counterparts.
Resumo:
Microvessel density (MVD) is a widely used surrogate measure of angiogenesis in pathological specimens and tumour models. Measurement of MVD can be achieved by several methods. Automation of counting methods aims to increase the speed, reliability and reproducibility of these techniques. The image analysis system described here enables MVD measurement to be carried out with minimal expense in any reasonably equipped pathology department or laboratory. It is demonstrated that the system translates easily between tumour types which are suitably stained with minimal calibration. The aim of this paper is to offer this technique to a wider field of researchers in angiogenesis.
Resumo:
There are several methods for determining the proteoglycan content of cartilage in biomechanics experiments. Many of these include assay-based methods and the histochemistry or spectrophotometry protocol where quantification is biochemically determined. More recently a method based on extracting data to quantify proteoglycan content has emerged using the image processing algorithms, e.g., in ImageJ, to process histological micrographs, with advantages including time saving and low cost. However, it is unknown whether or not this image analysis method produces results that are comparable to those obtained from the biochemical methodology. This paper compares the results of a well-established chemical method to those obtained using image analysis to determine the proteoglycan content of visually normal (n=33) and their progressively degraded counterparts with the protocols. The results reveal a strong linear relationship with a regression coefficient (R2) = 0.9928, leading to the conclusion that the image analysis methodology is a viable alternative to the spectrophotometry.
Resumo:
This thesis introduces improved techniques towards automatically estimating the pose of humans from video. It examines a complete workflow to estimating pose, from the segmentation of the raw video stream to extract silhouettes, to using the silhouettes in order to determine the relative orientation of parts of the human body. The proposed segmentation algorithms have improved performance and reduced complexity, while the pose estimation shows superior accuracy during difficult cases of self occlusion.
Resumo:
In outdoor environments shadows are common. These typically strong visual features cause considerable change in the appearance of a place, and therefore confound vision-based localisation approaches. In this paper we describe how to convert a colour image of the scene to a greyscale invariant image where pixel values are a function of underlying material property not lighting. We summarise the theory of shadow invariant images and discuss the modelling and calibration issues which are important for non-ideal off-the-shelf colour cameras. We evaluate the technique with a commonly used robotic camera and an autonomous car operating in an outdoor environment, and show that it can outperform the use of ordinary greyscale images for the task of visual localisation.