997 resultados para ISOTOPE RATIO
Resumo:
Twenty-four piston core sediment samples and 13 sediments and 3 basalts from DSDP Leg 78 Site 543 were analyzed for Sr, Nd and Pb isotopic compositions. The results show sediment with highly radiogenic Pb (206Pb/204Pb up to 19.8) and rather radiogenic Sr and unradiogenic Nd has been deposited in the region since the Cretaceous. The source of this sediment is probably the Archean Guiana Highland, which is drained by the Orinoco River. Pb and Sr isotopic compositions and sediment thickness decrease and 143Nd/144Nd increases northward due to a decrease in turbiditic component. This decrease is partly due to the damming action of basement ridges. Rare earth concentrations in the sediments are somewhat low, due to the abundance of detrital and biogenic components in the sediment and rapid sedimentation rates. Both positive and negative Ce anomalies occur in the surface sediments, but only positive Ce anomalies occur in the Site 543 sediments. It is unlikely that sediment subducted to the source region of Lesser Antilles arc magmas could be the cause of negative Ce anomalies in those magmas. Isotopic compositions of Site 543 basalts show some effect of contamination by seawater-basalt reaction products and sediments. Beyond this, however, they are typical of "normal" depleted MORB.
Resumo:
Strontium and O isotope compositions of green clay minerals from sediment cores of three boreholes drilled into (sites 424A and 509B) and close to a hydrothermal mound (site 424B) near the Galapagos Spreading Center (DSDP Legs 54 and 70) were determined. The green clays consist mostly of a transition from Fesmectite (nontronite) to glauconite. 87Sr/86Sr ratios were measured on clay size-fractions after gentle acid leaching and on the recovered leachates from different samples. The 87Sr/86Sr ratios of the clay residues from both the 424A and B sites are well below the modern seawater value, which points consistently to precipitation from hydrothermal fluids that contained variable amounts of seawater, even away from mound. However, most of the clay residues from mound site 509B have 87Sr/86Sr ratios significantly above the seawater value, suggesting the occurrence of a detrital component together with the new authigenic particles. The clay minerals of the hydrothermal mound are mixed with detrital components, and that of the sample taken outside but near the mound as a reference for the surrounding oceanic environment, yields a hydrothermal signature. Crystallization temperatures of the clays range from 32 to 63 °C assuming a d18O value of +2.2 per mil for the mineralizing fluids. Hydrothermal fluids generated in the underlying oceanic crust, mixed in varied proportions with ambient seawater and migrated into beds of the mound in a sequence of recurrent processes that ultimately resulted in the formation of the observed clay minerals. No significant temperature differences were detected for crystallization of the K-rich glauconite and K-depleted nontronite. The 87Sr/86Sr ratios of the Sr leached off the clay particles are near the value of modern seawater, inferring a progressive replacement of the hydrothermal fluids by seawater in the pore space of the mound sediments.
Resumo:
Fluctuations in the abundance of selected foraminiferal indicator species and diversity allowed the reconstruction of changes in deepwater oxygenation and monsoon-driven organic matter fluxes in the deep western Arabian Sea during the last 190 kyr. Times of maximum surface production coincide with periods of intensified SW monsoon as shown by the abundance of Globigerina bulloides and enhanced carbonate corrosion. Benthic ecosystem variability in the deep Arabian Sea is not exclusively driven by variations in monsoonal upwelling and related organic matter supply to the seafloor but also by changes in deepwater ventilation. Deepening of the base of the oxygen minimum zone (OMZ) below 1800 m water depth is strongly coherent on the precessional band but lags proxies of SW monsoon strength by 4 to 6 kyr. The "out-of-phase" relationship between OMZ deepening and maximum SW monsoon strength is explained by temporal changes in the advection of oxygen-rich deepwater masses of North Atlantic and Antarctic origin. This process affected the remineralization and burial efficiency of organic matter in the deep Arabian Sea, resulting in the observed phase lag between maximum monsoon strength and organic carbon preservation.
Resumo:
Ocean Drilling Program Site 1119 is ideally located to intercept discharges of sediment from the mid-latitude glaciers of the New Zealand Southern Alps. The natural gamma ray signal from the site's sediment core contains a history of the South Island mountain ice cap since 3.9 million years ago (Ma). The younger record, to 0.37 Ma, resembles the climatic history of Antarctica as manifested by the Vostok ice core. Beyond, and back to the late Pliocene, the record may serve as a proxy for both mid-latitude and Antarctic polar plateau air temperature. The gamma ray signal, which is atmospheric, also resembles the ocean climate history represented by oxygen isotope time series.
Resumo:
Interstitial water and sediment samples of the Integrated Ocean Drilling Program (IODP) expedition 313 "New Jersey Shallow Shelf" were analyzed for chemical composition and stable isotope ratios. A total of 222 water samples were collected from the cores by Rhizon samplers and squeezing of fresh core material. Water was analyzed for its stable oxygen and hydrogen isotope geochemistry (d2H and d18O) at sites M0027A and M0029A, and the carbon isotope composition of the dissolved inorganic carbon (d13CDIC) (all sites). In addition, organic material (Corg) and inorganic carbonates from sediments were analyzed for their carbon ratios (d13Corg and d13Ccarb), and in case of the carbonates also for oxygen (d18Ocarb). Carbon isotopes were also analyzed in samples containing enough methane gas (d13Cmeth). Pore fluids from site M0027A were analyzed for the sulfur isotope composition of dissolved sulfate (d34S). The combination of isotope analyses of all phases (interstitial water, sediment, and gas) with pore water chemistry is expected to enable a better understanding of processes in the sediment and will help to identify the origin of fluids under the New Jersey shelf.
Resumo:
This study investigates the d18O of pore waters from Sites 1003 through 1007, drilled along the western margin of the Great Bahama Bank during Leg 166 of the Ocean Drilling Program. These pore waters generally show a positive correlation between d18O and the concentration of chloride. The exception to this trend is Site 1006, where the pore waters exhibit nonlinear behavior with respect to chloride. The correlation between the concentration of Cl- and d18O at most of the sites appears to be a coincidence because although the increase in Cl- is a result of diffusion from an underlying source, the increases in d18O result from the recrystallization of metastable carbonates in the presence of a geothermal gradient. The difference in behavior in the d18O of the pore water at Site 1006 is probably a result of the relative reduced rate of carbonate recrystallization at this site. The d18O of the pore waters in the upper portion of the cores shows a pattern similar to the concentration of chloride in that there is an interval of 30-50 m in which neither the d18O nor the concentration of Cl- changes. This interval is consistent with either an interval of very rapid deposition of sediment or the advection of fluid through the platform. Both the d18O and the concentration of Cl- increase toward the platform, suggesting an input of saline and isotopically heavy water from the platform surface.
Resumo:
Since 1979/80, glaciological studies have been carried out at Ekströmisen, Antarctica, including accumulation-stake measurements, snow-pit and shallow-firn-core studies. Snowstratigraphy, chemical properties and stable-isotope ratios (d18O) were investigated. This study focuses on three cores taken between 1982 and 1998. The 1998 core was dated using dielectric profiling, d18O profiles and stake measurements. Accumulation rates showhigh interannual and spatial variability due to the extreme wind influence. No significant trend was found for the last 50 years; during the first half of the 20th century, accumulation decreased. The high spatial and interannual variability, however, means that trends must be interpreted with care. In spite of the highly irregular accumulation distribution, stable-isotope ratios show little spatial variability. The mean annual d18O values of cores B04 and FB0198 agree fairly well for the time period 1955-82 covered by both cores. d18O values have increased during most of the 20th century; since the late 1980s a decrease is observed. This change is not related to air temperature, since mean annual air temperatures at Neumayer show no significant trend over the last two decades.
Resumo:
A late Albian-early Cenomanian record (~103.3 to 99.0 Ma), including organic-rich deposits and a d13C increase associated with oceanic anoxic event 1d (OAE 1d), is described from Ocean Drilling Program sites 1050 and 1052 in the subtropical Atlantic. Foraminifera are well preserved at these sites. Paleotemperatures estimated from benthic d18O values average ~14°C for middle bathyal Site 1050 and ~17°C for upper bathyal Site 1052, whereas surface temperatures are estimated to have ranged from 26°C to 31°C at both sites. Among planktonic foraminifera, there is a steady balance of speciation and extinction with no discrete time of major faunal turnover. OAE 1d is recognized on the basis of a 1.2 per mill d13C increase (~100.0-99.6 Ma), which is similar in age and magnitude to d13C excursions documented in the North Atlantic and western Tethys. Organic-rich "black shales" are present throughout the studied interval at both sites. However, deposition of individual black shale beds was not synchronous between sites, and most of the black shale was deposited before the OAE 1d d13C increase. A similar pattern is observed at the other sites where OAE 1d has been recognized indicating that the site(s) of excess organic carbon burial that could have caused the d13C increase has (have) yet to be found. Our findings add weight to the view that OAEs should be chemostratigraphically (d13C) rather than lithostratigraphically defined.