931 resultados para ISOTHERMAL CRYSTALLIZATION
Resumo:
The one-step preparation of highly anisotropic polymer semiconductor thin films directly from solution is demonstrated. The conjugated polymer poly(3-hexylthiophene) (P3HT) as well as P3HT:fullerene bulk-heterojunction blends can be spin-coated from a mixture of the crystallizable solvent 1,3,5-trichlorobenzene (TCB) and a second carrier solvent such as chlorobenzene. Solidification is initiated by growth of macroscopic TCB spherulites followed by epitaxial crystallization of P3HT on TCB crystals. Subsequent sublimation of TCB leaves behind a replica of the original TCB spherulites. Thus, highly ordered thin films are obtained, which feature square-centimeter-sized domains that are composed of one spherulite-like structure each. A combination of optical microscopy and polarized photoluminescence spectroscopy reveals radial alignment of the polymer backbone in case of P3HT, whereas P3HT:fullerene blends display a tangential orientation with respect to the center of spherulite-like structures. Moreover, grazing-incidence wide-angle X-ray scattering reveals an increased relative degree of crystallinity and predominantly flat-on conformation of P3HT crystallites in the blend. The use of other processing methods such as dip-coating is also feasible and offers uniaxial orientation of the macromolecule. Finally, the applicability of this method to a variety of other semi-crystalline conjugated polymer systems is established. Those include other poly(3-alkylthiophene)s, two polyfluorenes, the low band-gap polymer PCPDTBT, a diketopyrrolopyrrole (DPP) small molecule as well as a number of polymer:fullerene and polymer:polymer blends. Macroscopic spherulite-like structures of the conjugated polymer poly(3-hexylthiophene) (P3HT) grow directly during spin-coating. This is achieved by processing P3HT or P3HT:fullerene bulk heterojunction blends from a mixture of the crystallizable solvent 1,3,5-trichlorobenzene and a second carrier solvent such as chlorobenzene. Epitaxial growth of the polymer on solidified solvent crystals gives rise to circular-symmetric, spherulite-like structures that feature a high degree of anisotropy.
Resumo:
Pathogens require protein-folding enzymes to produce functional virulence determinants. These foldases include the Dsb family of proteins, which catalyze oxidative folding in bacteria. Bacterial disulfide catalytic processes have been well characterized in Escherichia coli K-12 and these mechanisms have been extrapolated to other organisms. However, recent research indicates that the K-12 complement of Dsb proteins is not common to all bacteria. Importantly, many pathogenic bacteria have an extended arsenal of Dsb catalysts that is linked to their virulence. To help to elucidate the process of oxidative folding in pathogens containing a wide repertoire of Dsb proteins, Salmonella enterica serovar Typhimurium has been focused on. This Gram-negative bacterium contains three DsbA proteins: SeDsbA, SeDsbL and SeSrgA. Here, the expression, purification, crystallization and preliminary diffraction analysis of these three proteins are reported. SeDsbA, SeDsbL and SeSrgA crystals diffracted to resolution limits of 1.55, 1.57 and 2.6 Å and belonged to space groups P21, P21212 and C2, respectively.
Resumo:
Heteroleptic complexes of the type \[RuL2L′](PF6)2 (L, L′ = combinations of 1,10-phenanthroline (phen) and 2,2′-bipyridine (bipy)) were found to cocrystallize with \[Ni(phen)3](PF6)2 to produce cocrystals of \[Ni(phen)3]x\[RuL2L′]1–x(PF6)2. In this report we show that the ability of the complexes to cocrystallize is influenced by the number of common ligands between complexes in solution. Supramolecular selection is a phenomenon caused by molecular recognition through which cocrystals can grow from the same solution but contain different ratios of the molecular components. It was found that systems where L = phen displayed less supramolecular selection than systems where L = bipy. With increasing supramolecular selection, the composition of cocrystals was found to vary significantly from the initial relative concentration in the cocrystallizing solution, and therefore it was increasingly difficult to control the final composition of the resultant cocrystals. Consequently, modulation of concentration-dependent properties such as phase was also found to be less predictable with increasing supramolecular selection. Notwithstanding the complication afforded by the presence of supramolecular selection, our results reaffirm the robustness of the \[M(phen)3](PF6)2 structure because it was maintained even when ca. 90% of the complexes in the cocrystals were \[Ru(phen)(bipy)2](PF6)2, which in its pure form is not isomorphous with \[M(phen)3](PF6)2. Experiments between complexes without common ligands, i.e., \[Ru(bipy)3](PF6)2 cocrystallized with \[Ni(phen)3](PF6)2, were found to approach the limit to which molecular recognition processes can be confused into cocrystallizing different molecules to form single cocrystals. For these systems the result was the formation of block-shaped crystals skewered by a needle-shaped crystals.
Resumo:
The application of robotics to protein crystallization trials has resulted in the production of millions of images. Manual inspection of these images to find crystals and other interesting outcomes is a major rate-limiting step. As a result there has been intense activity in developing automated algorithms to analyse these images. The very first step for most systems that have been described in the literature is to delineate each droplet. Here, a novel approach that reaches over 97% success rate and subsecond processing times is presented. This will form the seed of a new high-throughput system to scrutinize massive crystallization campaigns automatically. © 2010 International Union of Crystallography Printed in Singapore-all rights reserved.
Resumo:
When crystallization screening is conducted many outcomes are observed but typically the only trial recorded in the literature is the condition that yielded the crystal(s) used for subsequent diffraction studies. The initial hit that was optimized and the results of all the other trials are lost. These missing results contain information that would be useful for an improved general understanding of crystallization. This paper provides a report of a crystallization data exchange (XDX) workshop organized by several international large-scale crystallization screening laboratories to discuss how this information may be captured and utilized. A group that administers a significant fraction of the worlds crystallization screening results was convened, together with chemical and structural data informaticians and computational scientists who specialize in creating and analysing large disparate data sets. The development of a crystallization ontology for the crystallization community was proposed. This paper (by the attendees of the workshop) provides the thoughts and rationale leading to this conclusion. This is brought to the attention of the wider audience of crystallographers so that they are aware of these early efforts and can contribute to the process going forward. © 2012 International Union of Crystallography All rights reserved.
Resumo:
This work reports the effect of seed nanoparticle size and concentration effects on heterogeneous crystal nucleation and growth in colloidal suspensions. We examined these effects in the Au nanoparticle-seeded growth of Au-ZnO hetero-nanocrystals under synthesis conditions that generate hexagonal, cone-shaped ZnO nanocrystals. It was observed that small (~ 4 nm) Au seed nanoparticles form one-to-one Au-ZnO hetero dimers and that Au nanoparticle seeds of this size can also act as crystallization ‘catalysts’ that readily promote the nucleation and growth of ZnO nanocrystals. Larger seed nanoparticles (~9 nm, ~ 11 nm) provided multiple, stable ZnO-nucleation sites, generating multi-crystalline hetero trimers, tetramers and oligomers.
Resumo:
An intrinsic exposed core optical fiber sensor (IECOFS) made from fused silica was used to monitor the crystallization of calcium carbonate (CaCO3) and CaCO3/calcium sulfate (CaSO4) composite at 100 and 120 °C in the absence and presence of low-molar-mass (Mn ≤ 2000) poly(acrylic acid) (PAA) with different end groups. The IECOFS responded only to deposition and growth processes on the fiber surface rather than changes occurring in the bulk of the solution. Hexyl isobutyrate-terminated PAA (Mn = 1400) and hexadecyl isobutyrate-terminated PAA (Mn = 1700) were the most effective species in preventing CaCO3 deposition. Phase transformation from vaterite to aragonite/calcite decreased with increasing hydrophobicity of the PAA end group. Low-molar-mass PAA at 10 ppm showed very significant inhibition of CaCO3/CaSO4 composite formation for all end groups investigated.
Resumo:
The binding of xylo-oligosaccharides to Chainia endoxylanase resulted in a decrease in fluorescence intensity of the enzyme with the formation of 1:1 complex. Equilibrium and thermodynamic parameters of ligand binding were determined by fluorescence titrations and titration calorimetry. The affinity of xylanase for the oligosaccharides increases in the order X-2 < X-3 < X-4 less than or equal to X-5. Contributions from the enthalpy towards the free energy change decreased with increasing chain length from X-2 to X-4, whereas an increase in entropy was observed, the change in enthalpy and entropy of binding being compensatory. The entropically driven binding process suggested that hydrophobic interactions as well as hydrogen bonds play a predominant role in ligand binding.
Resumo:
Crystallization of amorphous germanium (a-Ge) by laser or electron beam heating is a remarkably complex process that involves several distinct modes of crystal growth and the development of intricate microstructural patterns on the nanosecond to ten microsecond time scales. Here we use dynamic transmission electron microscopy (DTEM) to study the fast, complex crystallization dynamics with 10 nm spatial and 15 ns temporal resolution. We have obtained time-resolved real-space images of nanosecond laser-induced crystallization in a-Ge with unprecedentedly high spatial resolution. Direct visualization of the crystallization front allows for time-resolved snapshots of the initiation and roughening of the dendrites on submicrosecond time scales. This growth is followed by a rapid transition to a ledgelike growth mechanism that produces a layered microstructure on a time scale of several microseconds. This study provides insights into the mechanisms governing this complex crystallization process and is a dramatic demonstration of the power of DTEM for studying time-dependent material processes far from equilibrium.
Resumo:
The crystallization of amorphous semiconductors is a strongly exothermic process. Once initiated the release of latent heat can be sufficient to drive a self-sustaining crystallization front through the material in a manner that has been described as explosive. Here, we perform a quantitative in situ study of explosive crystallization in amorphous germanium using dynamic transmission electron microscopy. Direct observations of the speed of the explosive crystallization front as it evolves along a laser-imprinted temperature gradient are used to experimentally determine the complete interface response function (i.e., the temperature-dependent front propagation speed) for this process, which reaches a peak of 16 m/s. Fitting to the Frenkel-Wilson kinetic law demonstrates that the diffusivity of the material locally/immediately in advance of the explosive crystallization front is inconsistent with those of a liquid phase. This result suggests a modification to the liquid-mediated mechanism commonly used to describe this process that replaces the phase change at the leading amorphous-liquid interface with a change in bonding character (from covalent to metallic) occurring in the hot amorphous material.
Resumo:
Bread staling is a very complex phenomenon that is not yet completely understood. The present work explains how the electrical impedance spectroscopy technique can be utilized to investigate the effect of staling on the physicochemical properties of wheat bread during storage. An instrument based on electrical impedance spectroscopy technique is developed to study the electrical properties of wheat bread both at its crumb and crust with the help of designed multi-channel ring electrodes. Electrical impedance behavior, mainly capacitance and resistance, of wheat bread at crust and crumb during storage (up to 120 h) is investigated. The variation in capacitance showed the glass transition phenomenon at room temperature in bread crust after 96 h of storage with 18% of moisture in it. The resistance changes at bread crumb showed the starch recrystallization during staling.
Resumo:
Semieonducting GaxTe~oo-x (17 -< x _< 25) glasses have been prepared by melt quenching method and thermal crystallization studies carried out using differential scanning calorimetry. On heating, virgin GaxTel0o-x glasses exhibit one glass transition and two crystallization reactions.The first crystallization reaction corresponds to the precipitation of hexagonal Te and the second one to the crystallization of the matrix into zinc blende Ga2Te3 phase. If GaxTeloo-x glasses are quenched to ambient temperature from Tcrl and reheated, they exhibit the phenomenon of double glass transition.
Resumo:
The ability to deliver the drug to the patient in a safe, efficacious and cost-effective manner depends largely on the physicochemical properties of the active pharmaceutical ingredient (API) in the solid state. In this context, crystallization is of critical importance in pharmaceutical industry, as it defines physical and powder properties of crystalline APIs. An improved knowledge of the various aspects of crystallization process is therefore needed. The overall goal of this thesis was to gain better understanding of the relationships between crystallization, solid-state form and properties of pharmaceutical solids with a focus on a crystal engineering approach to design technological properties of APIs. Specifically, solid-state properties of the crystalline forms of the model APIs, erythromycin A and baclofen, and the influence of solvent on their crystallization behavior were investigated. In addition, the physical phenomena associated with wet granulation and hot-melting processing of the model APIs were examined at the molecular level. Finally, the effect of crystal habit modification of a model API on its tabletting properties was evaluated. The thesis enabled the understanding of the relationship between the crystalline forms of the model APIs, which is of practical importance for solid-state control during processing and storage. Moreover, a new crystalline form, baclofen monohydrate, was discovered and characterized. Upon polymorph screening, erythromycin A demonstrated high solvate-forming propensity thus emphasizing the need for careful control of the solvent effects during formulation. The solvent compositions that yield the desirable crystalline form of erythromycin A were defined. Furthermore, new examples on solvent-mediated phase transformations taking place during wet granulation of baclofen and hot-melt processing of erythromycin A dihydrate with PEG 6000 are reported. Since solvent-mediated phase transformations involve the crystallization of a stable phase and hence affect the dissolution kinetics and possibly absorption of the API these transformations must be well documented. Finally, a controlled-crystallization method utilizing HPMC as a crystal habit modifier was developed for erythromycin A dihydrate. The crystals with modified habit were shown to posses improved compaction properties as compared with those of unmodified crystals. This result supports the idea of morphological crystal engineering as a tool for designing technological properties of APIs and is of utmost practical interest.
Resumo:
Differential scanning calorimetry, x-ray diffraction and transmission electron microscopy have been employed to determine the thermal stability and identify the crystalline phases on devitrification of Metglas 2826 MB. The glass crystallizes intoγ-FeNiMo and fcc (FeNi)23B6 with activation energies of 270 and 375 kJ mol−1 respectively. The reactions are primary and polymorphic in nature. The influence of Mo towards crystallization of Fe40Ni40B20 has been to enhance the formation of the fcc (FeNi)23B6 phase in preference to orthorhombic (FeNi)3B phase and to raise the thermal stability of the amorphous state.