985 resultados para ISOLATED RAT ADIPOCYTES


Relevância:

80.00% 80.00%

Publicador:

Resumo:

Dronedarone is a new antiarrhythmic drug with an amiodarone-like benzofuran structure. Shortly after its introduction, dronedarone became implicated in causing severe liver injury. Amiodarone is a well-known mitochondrial toxicant. The aim of our study was to investigate mechanisms of hepatotoxicity of dronedarone in vitro and to compare them with amiodarone. We used isolated rat liver mitochondria, primary human hepatocytes, and the human hepatoma cell line HepG2, which were exposed acutely or up to 24h. After exposure of primary hepatocytes or HepG2 cells for 24h, dronedarone and amiodarone caused cytotoxicity and apoptosis starting at 20 and 50 µM, respectively. The cellular ATP content started to decrease at 20 µM for both drugs, suggesting mitochondrial toxicity. Inhibition of the respiratory chain required concentrations of ~10 µM and was caused by an impairment of complexes I and II for both drugs. In parallel, mitochondrial accumulation of reactive oxygen species (ROS) was observed. In isolated rat liver mitochondria, acute treatment with dronedarone decreased the mitochondrial membrane potential, inhibited complex I, and uncoupled the respiratory chain. Furthermore, in acutely treated rat liver mitochondria and in HepG2 cells exposed for 24h, dronedarone started to inhibit mitochondrial β-oxidation at 10 µM and amiodarone at 20 µM. Similar to amiodarone, dronedarone is an uncoupler and an inhibitor of the mitochondrial respiratory chain and of β-oxidation both acutely and after exposure for 24h. Inhibition of mitochondrial function leads to accumulation of ROS and fatty acids, eventually leading to apoptosis and/or necrosis of hepatocytes. Mitochondrial toxicity may be an explanation for hepatotoxicity of dronedarone in vivo.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Monoterpenes, present in aromatic plants, are known to inhibit bone resorption in vivo. In this in vitro study, they inhibited the activation of osteoclasts only at high concentrations but inhibited the formation at much lower concentrations. Therefore, monoterpenes may act in vivo directly on osteoclastogenesis. INTRODUCTION: Monoterpenes are the major components of essential oils, which are formed in many plants. Typically, they are found in herbs and certain fruits. When fed to rats, they inhibit bone resorption by an unknown mechanism. In this study, their effect on the activity and formation of osteoclasts in vitro was studied. MATERIALS AND METHODS: The effect of monoterpenes on the development of osteoclasts was studied in co-cultures of bone marrow cells and osteoblasts and in cultures of spleen cells grown with colony stimulating factor (CSF)-1 and RANKL. In cultures of primary osteoblasts, alkaline phosphatase activity and levels of mRNA encoding RANKL and osteoprotegerin (OPG) mRNA (RT-PCR), and in osteoblast and spleen cell cultures, lactate dehydrogenase activity, a measure of toxicity, were determined. The activity of isolated rat osteoclasts was determined by counting the osteoclasts with actin rings using histofluorometry. RESULTS: The monoterpenes inhibited the formation of osteoclasts more strongly in co-cultures (> or = 1 microM) than in cultures of spleen cells (> or = 10 microM). They had a minor effect on osteoblasts. Toxic effects were not observed. The inhibition of the formation of osteoclasts was not reversed by the addition of farnesol and geranylgeraniol, excluding an effect of the monoterpenes through the mevalonate pathway. A high concentration of 1 mM was required to inhibit the activation of osteoclasts. This effect, shown for menthol and borneol, was reversible. CONCLUSIONS: The results suggest that the monoterpenes inhibit bone resorption in vivo through a direct effect on the formation of osteoclasts acting mainly on the hemopoietic cells.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The aim of this dissertation was to examine the hypothesis that (R)-nipecotic acid ethyl ester ((R)-NAEE) is a cholinergic agonist that is selective for a particular subclass (M$\sb1$ or M$\sb2$) of muscarinic receptors.^ Ligand binding studies indicated that like cholinergic agonists (R)-NAEE selectively interacts with rat heart (M$\sb2$) and brain (M$\sb1$) muscarinic binding sites. Physiological studies revealed that unlike cholinergic agonists (R)-NAEE stimulated only those responses coupled to M$\sb2$ muscarinic receptors (acid secretion, negative inotropic response, smooth muscle contraction). Moreover, in rat brain (R)-NAEE differentiated between M$\sb2$ receptors negatively coupled to adenylate cyclase activity and M$\sb1$ receptors mediating PI turnover, being a weak competitive antagonist at these latter sites. In isolated rat gastric mucosal cells (R)-NAEE also differentiated between two M$\sb2$ coupled responses where it potentiated acid secretion but could not stimulate PI turnover. Atropine, a selective antimuscarinic agent, competitively antagonized all agonist effects of (R)-NAEE.^ Unlike (R)-NAEE, the muscarinic agonist arecoline, which is structurally similar to (R)-NAEE, stimulates both M$\sb1$ and M$\sb2$ receptors. Structure activity studies revealed that saturation of the piperidine ring and the length of the ester side chain of (R)-NAEE are the most important determinants for both M$\sb2$ efficacy and selectivity.^ The results of this dissertation establish that (R)-NAEE is a cholinergic muscarinic receptor agonist that displays greater efficacy at M$\sb2$ than at M$\sb1$ receptors, being a weak antagonist at the M$\sb1$ site. With such selectivity, (R)-NAEE may be regarded as a prototype for a unique class of cholinergic muscarinic M$\sb2$ receptor agonists. Because of these unique properties, (R)-NAEE should be useful in the further characterization of muscarinic receptors, and could lead to the development of a new class of therapeutic agents. ^

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Glutathione (GSH) is involved in the detoxication of numerous chemicals exogenously exposed or endogenously generated. Exposure to these agents cause depletion of cellular GSH rendering these cells more susceptible to the toxic action of these same agents. Formaldehyde (CH(,2)O) was found to deplete cellular GSH, presumably by the formation of the GSH-CH(,2)O complex, S-hydroxymethylglutathione, and its rapid extrusion into the extracellular medium.^ The metabolism and toxicity of CH(,2)O were determined to be dependent upon cellular GSH in vitro and in vivo. The rate of CH(,2)O oxidation decreased and the extent of toxicity increased when isolated rat hepatocytes or strain A/J mice were pretreated with the GSH-depleting agent, diethyl maleate (DEM). Additional experiments were designed to further study the role GSH plays in detoxication using isolated rat hepatocytes.^ L-Methionine protected against the extent of lipid peroxidation and leakage of the cytosolic enzyme, lactate dehydrogenase (LDH), caused by CH(,2)O in DEM-pretreated hepatocytes, further supporting the protective role of GSH against cellular toxicity. The antioxidants, ascorbate, butylated hydroxytoluene, and (alpha)-tocopherol, were all protective against the extent of lipid peroxidation and leakage of LDH in isolated rat hepatocytes. Whereas L-methionine may be protective by increasing the cellular concentration of GSH which is used to detoxify free radicals or by facilitating the rate of CH(,2)O oxidation, the antioxidant, ascorbate, was protective without altering the rate of CH(,2)O oxidation or increasing cellular GSH levels. These results suggest that the free radical-mediated toxicity caused by CH(,2)O in DEM-pretreated hepatocytes is due to the further depletion of GSH by CH(,2)O and not to increased CH(,2)O persistence. How this further depletion in GSH by CH(,2)O in DEM-pretreated hepatocytes results in lipid peroxidation and cell death was further investigated.^ The further decrease in GSH caused by CH(,2)O in DEM-pretreated hepatocytes, suspected of stimulating lipid peroxidation and cell death, was found not to be due to depletion of mitochondrial GSH but to depletion of protein sulfhydryl groups. In addition, cellular toxicity appears more closely correlated with depletion of protein sulfhydryl groups than with an increase in cytosolic free Ca('2+). The combination of CH(,2)O and DEM may be a useful tool in identifying these critical sulfhydryl-protein(s) and to further understand the role GSH plays in detoxication. ^

Relevância:

80.00% 80.00%

Publicador:

Resumo:

La reperfusión, luego de un período de isquemia miocárdica breve, puede desencadenar un daño paradojal, dentro del cual, se destacan las arritmias ventriculares. Existen estudios que reportan un efecto beneficioso del ácido acetilsalicílico (AAS) a nivel cardiovascular, pero se desconocen los efectos electrofisiológicos en el proceso de injuria por isquemia/reperfusión. El objetivo de este estudio es evaluar las propiedades electrofisiológicas del AAS, en especial si puede evitar las arritmias de reperfusión (AR) en forma independiente de su efecto antiplaquetario. Se trabajó con corazones aislados de rata Sprague Dawley según la técnica de Langendorff sometidos a 10 minutos de isquemia regional. Se realizaron 3 series esperimentales: 1) control (C, n=10); 2) , corazones perfundidos durante todo el protocolo con AAS 0.14 mM (AAS, n=10) y 3) corazones que recibieron la misma dosis de AAS sólo en los 3 primeros minutos de la reperfusión (AASR, n=9). Se analizaron la incidencia y severidad de las AR y su relación con el ECG y los potenciales de acción registrados simultáneamente. El 82% del grupo control presentó AR sostenidas, el 30 % con AAS y el 22% con AASR (ambas p<0.05 por χ2). En la reperfusión se observó que luego de los primeros tres minutos la duración del potencial de acción (DPA) fue mayor en el grupo AASR (81,5 ± 23,1) que en el grupo AAS (55,2 ± 10,0) p<0.05 por ANOVA I. Por lo tanto, la menor incidencia de AR en los grupos tratados podría asociarse al efecto de la aspirina sobre la DPA y que la droga estudiada tendría efectos sobre esta variable sólo al momento de reperfusión.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The signaling pathway initiated by factor Xa on vascular endothelial cells was investigated. Factor Xa stimulated a 5- to 10-fold increased release of nitric oxide (NO) in a dose-dependent reaction (0.1–2.5 μg/ml) unaffected by the thrombin inhibitor hirudin but abolished by active site inhibitors, tick anticoagulant peptide, or Glu-Gly-Arg-chloromethyl ketone. In contrast, the homologous clotting protease factor IXa or another endothelial cell ligand, fibrinogen, was ineffective. A factor Xa inter-epidermal growth factor synthetic peptide L83FTRKL88(G) blocking ligand binding to effector cell protease receptor-1 inhibited NO release by factor Xa in a dose-dependent manner, whereas a control scrambled peptide KFTGRLL was ineffective. Catalytically active factor Xa induced hypotension in rats and vasorelaxation in the isolated rat mesentery, which was blocked by the NO synthase inhibitor l-NG-nitroarginine methyl ester (l-NAME) but not by d-NAME. Factor Xa/NO signaling also produced a dose-dependent endothelial cell release of interleukin 6 (range 0.55–3.1 ng/ml) in a reaction inhibited by l-NAME and by the inter-epidermal growth factor peptide Leu83–Leu88 but unaffected by hirudin. Maximal induction of interleukin 6 mRNA required a brief, 30-min stimulation with factor Xa, unaffected by subsequent addition of tissue factor pathway inhibitor. These data suggest that factor Xa-induced NO release modulates endothelial cell-dependent vasorelaxation and cytokine gene expression. This pathway requiring factor Xa binding to effector cell protease receptor-1 and a secondary step of ligand-dependent proteolysis may preserve an anti-thrombotic phenotype of endothelium but also trigger acute phase responses during activation of coagulation in vivo.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Sterol regulatory element binding proteins (SREBPs) enhance transcription of genes encoding enzymes of cholesterol and fatty acid biosynthesis and uptake. In the current experiments, we observed a decline in the mRNA encoding one SREBP isoform, SREBP-1c, in the livers of rats that were rendered diabetic by treatment with streptozotocin. There was no change in the mRNA encoding SREBP-1a, which is derived from the same gene as SREBP-1c but uses a different promoter. The ratio of SREBP-1c:1a transcripts fell 25-fold from 5:1 in control rats to 0.2:1 in the diabetic animals. The SREBP-1c mRNA rose nearly to normal, and the 1c:1a ratio increased 17-fold when the diabetic rats were treated for 6 h with insulin. These treatments produced no change in the mRNA for SREBP-2, which is encoded by a separate gene. The SREBP-1c mRNA also fell selectively in freshly isolated rat hepatocytes and rose when the cells were treated with insulin. Considered together with recent data on hepatocytes [Foretz, M., Pacot, C., Dugal, I., et al. (1999) Mol. Cell. Biol. 19, 3760–3768], the current in vivo studies suggest that insulin may stimulate lipid synthesis in the liver by selectively inducing transcription of the SREBP-1c gene.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Alendronate (ALN), an aminobisphosphonate used in the treatment of osteoporosis, is a potent inhibitor of bone resorption. Its molecular target is still unknown. This study examines the effects of ALN on the activity of osteoclast protein-tyrosine phosphatase (PTP; protein-tyrosine-phosphate phosphohydrolase, EC 3.1.3.48), called PTPepsilon. Using osteoclast-like cells generated by coculturing mouse bone marrow cells with mouse calvaria osteoblasts, we found by molecular cloning and RNA blot hybridization that PTPepsilon is highly expressed in osteoclastic cells. A purified fusion protein of PTPepsilon expressed in bacteria was inhibited by ALN with an IC50 of 2 microM. Other PTP inhibitors--orthovanadate and phenylarsine oxide (PAO)-inhibited PTPepsilon with IC50 values of 0.3 microM and 18 microM, respectively. ALN and another bisphosphonate, etidronate, also inhibited the activities of other bacterially expressed PTPs such as PTPsigma and CD45 (also called leukocyte common antigen). The PTP inhibitors ALN, orthovanadate, and PAO suppressed in vitro formation of multinucleated osteoclasts from osteoclast precursors and in vitro bone resorption by isolated rat osteoclasts (pit formation) with estimated IC50 values of 10 microM, 3 microM, and 0.05 microM, respectively. These findings suggest that tyrosine phosphatase activity plays an important role in osteoclast formation and function and is a putative molecular target of bisphosphonate action.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The experiments reported here were designed to test the hypothesis that the two-electron quinone reductase DT-diaphorase [NAD(P)H:(quinone-acceptor) oxidoreductase, EC 1.6.99.2] functions to maintain membrane-bound coenzyme Q (CoQ) in its reduced antioxidant state, thereby providing protection from free radical damage. DT-diaphorase was isolated and purified from rat liver cytosol, and its ability to reduce several CoQ homologs incorporated into large unilamellar vesicles was demonstrated. Addition of NADH and DT-diaphorase to either large unilamellar or multilamellar vesicles containing homologs of CoQ, including CoQ9 and CoQ10, resulted in the essentially complete reduction of the CoQ. The ability of DT-diaphorase to maintain the reduced state of CoQ and protect membrane components from free radical damage as lipid peroxidation was tested by incorporating either reduced CoQ9 or CoQ10 and the lipophylic azoinitiator 2,2'-azobis(2,4-dimethylvaleronitrile) into multilamellar vesicles in the presence of NADH and DT-diaphorase. The presence of DT-diaphorase prevented the oxidation of reduced CoQ and inhibited lipid peroxidation. The interaction between DT-diaphorase and CoQ was also demonstrated in an isolated rat liver hepatocyte system. Incubation with adriamycin resulted in mitochondrial membrane damage as measured by membrane potential and the release of hydrogen peroxide. Incorporation of CoQ10 provided protection from adriamycin-induced mitochondrial membrane damage. The incorporation of dicoumarol, a potent inhibitor of DT-diaphorase, interfered with the protection provided by CoQ. The results of these experiments provide support for the hypothesis that DT-diaphorase functions as an antioxidant in both artificial membrane and natural membrane systems by acting as a two-electron CoQ reductase that forms and maintains the antioxidant form of CoQ. The suggestion is offered that DT-diaphorase was selected during evolution to perform this role and that its conversion of xenobiotics and other synthetic molecules is secondary and coincidental.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Neuropeptide Y (NPY) is one of the most abundant peptide transmitters in the mammalian brain. In the periphery it is costored and coreleased with norepinephrine from sympathetic nerve terminals. However, the physiological functions of this peptide remain unclear because of the absence of specific high-affinity receptor antagonists. Three potent NPY receptor antagonists were synthesized and tested for their biological activity in in vitro, ex vivo, and in vivo functional assays. We describe here the effects of these antagonists inhibiting specific radiolabeled NPY binding at Y1 and Y2 receptors and antagonizing the effects of NPY in human erythroleukemia cell intracellular calcium mobilization perfusion pressure in the isolated rat kidney, and mean arterial blood pressure in anesthetized rats.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

This project identified a novel family of six 66-68 residue peptides from the venom of two Australian funnel-web spiders, Hadronyche sp. 20 and H. infensa: Orchid Beach (Hexathelidae: Atracinae), that appear to undergo N- and/or C-terminal post-translational modifications and conform to an ancestral protein fold. These peptides all show significant amino acid sequence homology to atracotoxin-Hvf17 (ACTX-Hvf17), a non-toxic peptide isolated from the venom of H. versuta, and a variety of AVIT family proteins including mamba intestinal toxin 1 (MIT1) and its mammalian and piscine orthologs prokineticin 1 (PK1) and prokineticin 2 PK2). These AVIT family proteins target prokineticin receptors involved in the sensitization of nociceptors and gastrointestinal smooth muscle activation. Given their sequence homology to MITI, we have named these spider venom peptides the MIT-like atracotoxin (ACTX) family. Using isolated rat stomach fundus or guinea-pia ileum organ bath preparations we have shown that the prototypical ACTX-Hvf17, at concentrations up to 1 mu M, did not stimulate smooth muscle contractility, nor did it inhibit contractions induced by human PK1 (hPK1). The peptide also lacked activity on other isolated smooth muscle preparations including rat aorta. Furthermore, a FLIPR Ca2+ flux assay using HEK293 cells expressing prokineticin receptors showed that ACTX-Hvf17 fails to activate or block hPK1 or hPK2 receptors. Therefore, while the MIT-like ACTX family appears to adopt the ancestral disulfide-directed beta-hairpin protein fold of MIT1, a motif believed to be shared by other AVIT family peptides, variations in the amino acid sequence and surface charge result in a loss of activity on prokineticin receptors. (c) 2005 Elsevier Inc. All rights reserved.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Muscle glycogen inharmoniously regulates glycogen synthase activity, glucose uptake, and proximal insulin signaling. Am J Physiol Endocrinol Metab 290: E154-E162, 2006. First published August 23, 2005; doi:10.1152/ajpendo. 00330.2005.-Insulin-stimulated glucose uptake and incorporation of glucose into skeletal muscle glycogen contribute to physiological regulation of blood glucose concentration. In the present study, glucose handling and insulin signaling in isolated rat muscles with low glycogen (LG, 24-h fasting) and high glycogen (HG, refed for 24 h) content were compared with muscles with normal glycogen (NG, rats kept on their normal diet). In LG, basal and insulin-stimulated glycogen synthesis and glycogen synthase activation were higher and glycogen synthase phosphorylation (Ser645, Ser649, Ser653, Ser657) lower than in NG. GLUT4 expression, insulin-stimulated glucose uptake, and PKB phosphorylation were higher in LG than in NG, whereas insulin receptor tyrosyl phosphorylation, insulin receptor substrate-1-associated phosphatidylinositol 3-kinase activity, and GSK-3 phosphorylation were unchanged. Muscles with HG showed lower insulin-stimulated glycogen synthesis and glycogen synthase activation than NG despite similar dephosphorylation. Insulin signaling, glucose uptake, and GLUT4 expression were similar in HG and NG. This discordant regulation of glucose uptake and glycogen synthesis in HG resulted in higher insulin-stimulated glucose 6-phosphate concentration, higher glycolytic flux, and intracellular accumulation of nonphosphorylated 2-deoxyglucose. In conclusion, elevated glycogen synthase activation, glucose uptake, and GLUT4 expression enhance glycogen resynthesis in muscles with low glycogen. High glycogen concentration per se does not impair proximal insulin signaling or glucose uptake. Insulin resistance is observed at the level of glycogen synthase, and the reduced glycogen synthesis leads to increased levels of glucose 6-phosphate, glycolytic flux, and accumulation of nonphosphorylated 2-deoxyglucose.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Nitric oxide is a free-radical gas which can exert both protective and damaging effects. The objectives of the thesis were: (i) to investigate arginine metabolism in isolated rat gastric mucosal cells, (ii) to investigate the role of NO in the induction of ornithine decarboxylase in the rat gastric mucosa damaged by hypertonic saline in vivo, (iii) to expose primary cultures of guinea-pig gastric mucosal cells to oxidative challenge and an NO donor, and to investigate the response in terms of heat shock protein 72 (HSP 72) induction, and (iv) to investigate the induction of iNOS and the role of potential modulators of activity in gastric cell lines. Isolated rat gastric mucosal cells converted exogenous arginine to ornithine and citrulline. This metabolism of arginine was not affected by a range of NO synthase inhibitors, but was reduced by the arginase inhibitors NG-hydroxy-L-arginine and L-ornithine. Thus, the predominant pathway of arginine metabolism involves arginase and ornithine transcarbamoylase, not NO synthase. Pretreatment of rats with NG-nitro-L-arginine promoted activation of ornithine decarboxylase after intragastric hypertonic saline, but did not increase acid phosphatase release (damage). NO may therefore restrict activation of ornithine decarboxylase in response to damage. Exposure of primary cultures of guinea-pig gastric mucosal cells to S-nitroso-N-acetyl-penicillamine (SNAP) caused a concentration dependent induction of HSP 72, which was inhibited by an NO scavenger and blockade of transcription. The effect of SNAP was enhanced by decreasing the intracellular reduced thiol content with diethyl maleate, which itself also induced HSP 72 formation. Substantial amounts of NO may induce defensive responses in cells. Induction of iNOS was not detected in HGT-1 or AGS cells exposed to cytokines. Conclusions An arginase pathway may restrict availability of arginine for NO synthase in gastric mucosa or may be present to supply ornithine for polyamine synthesis. NO may modulate the response to damage of the stomach epithelium in vivo. Exogenous NO may induce a defensive response in gastric mucosal cells.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The action of bradykinin on transepithelial transfer of sodium and water in isolated rat jejunum and on smooth muscle contraction of rat terminal ileum has been investigated. (1) Bradykinin was shown to stimulate transfer at low control transfer, inhibit transfer at high control transfer and have no effect at intermediate transfer in rat jejunal sacs. Stimulation of transfer occurred only when bradykinin was in the serosal solutiun while inhibition of transfer occurred whether bradykinin was in the aerosal or mucosal solution. Bradykinin-induced stimulation of transfer was not affected by adrenalectomy, nephrectomy, combined adrenalectomy-nephrectomy,  nor maintenance on 1% saline drinking solution or low sodium diet pretreatment. Meclofenamic acid abolished the bradykinin-induced inhibition of water transfer while prostaglandins A1, E1 aud F2α all potentiated this action. Theophylline inhibited water transfer and potentiated the bradykinin-induced inhibition of water transfer. Cyclic AMP and dibutyryl cyclic AMP both inhibited water transfer and the bradykinin-induced inhibition of water transfer was potentiated by the latter. ( 2 ) Bradykinin-induced contractions of rat terminal ileum were little affected by hyoscine while those of acetylcholine were abolished. Anoxia reduced markedly responses tv bradykinin while those of acetylcholine were little affected . Theophylline reduced the responses of rat terminal ileum to bradykinin significantly more than those to acetylcholine. Aspirin and indomethacin reduced markedly the responses to bradykinin while not affecting those to acetylcholine and PGT2. Meslofenamic acid at a concentration of 3.4 µM blocked bradykinin-induced contractions but had no effect on those to acctylcholine, PGE2 or PGF2 and at a concentration of 17. 0 µM drastically reduced bradykinin responses but also reduced those to acetylcholine, PGE2 and PGF2α• Flufenamic acid drastically reduced responses to bradykinin while not affecting those to acetylcholine and PGE2 and slightly affecting those to PGF2α. Polyphloretin phosphate reduced responses to bradykinin, PGF2α and PGE2 but not acetylcholine . Diphloretin phosphate reduced responses to bradykinin, PGF2 and PGE2 in a dose dependent manner but not those to acetylcholine. SC 19220 , in a dose dependent manner, inhibited responses to bradykinin and PGE2 but not to acetylcholine and PGF2. 7 oxa - 13 -prostynoic acid non specifically reduced responses to acetylcholine, bradykinin and PGE2. Bradykinin, in the presence of SQ 20881 , increased the release of prostaglandin-like activity from rat terminal ileum and this was reduced or abolished in the presence of indomethacin, aspirin, meclofenamic acid or flufenamio acid. The extract of PG-like activity did not appear as PGE, PGA or PGFon TLC, but included a substance with similar mobility as 15-Keto-prosta-glandin E2.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Objectives Curcuma zedoaroides A. Chaveerach & T. Tanee, locally known as Wan-Paya-Ngoo-Tua-Mia, is commonly used in the North-Eastern part of Thailand as a 'snakebite antidote'. The aim of this study was to isolate the active compound from the rhizome of C. zedoaroides, to determine its structure and to assess its antagonistic activity in vitro and in vivo against King cobra venom. Methods The active compound was obtained from C. zedoaroides by extraction with acetone followed by purification using column chromatography; its X-ray structure was determined. Its inhibition of venom lethality was studied in vitro in rat phrenic nerve-hemidiaphragms and in vivo in mice. Key findings The acetone extract of the Curcuma rhizomes contained a C20 dialdehyde, [2-(5,5,8a-trimethyl-2-methylene-decahydro-naphthalen-1-yl)-ethylidene] -succinaldehyde, as the major component. The isolated curcuma dialdehyde was found active in vitro and in vivo for antivenin activity against the King cobra venom. Using isolated rat phrenic nerve-hemidiaphragm preparations, a significant antagonistic effect on the inhibition of neuromuscular transmission was observed in vitro. Inhibition on muscle contraction, produced by the 4 μg/ml venom, was reversed by 2-16 μg/ml of Curcuma dialdehyde in organ bath preparations over a period of 2 h. Mice intraperitoneally injected with 0.75 mg/kg venom and dialdehyde at 100 mg/kg had a significantly increased survival time. Injection of Curcuma dialdehyde (100 mg/kg) 30 min before the subcutaneous injection of the venom resulted in a 100% survival time after 2 h compared with 0% for the control group. Conclusions The in vitro and in vivo evaluation confirmed the medicinal use of traditional snake plants against snakebites. The bioactivity is linked to an isolated molecule and not a result of synergistic effects of a mixture. The active compound was isolated and the structure fully elucidated, including its stereochemistry. This dialdehyde is a versatile chemical building block and can be easily obtained from this plant source. © 2010 Royal Pharmaceutical Society of Great Britain.