238 resultados para INTRONS


Relevância:

10.00% 10.00%

Publicador:

Resumo:

BACKGROUND: Variation in the ABCB1 gene is believed to play a role in drug resistance in epilepsy. HYPOTHESIS/OBJECTIVES: Variation in the ABCB1 gene encoding the permeability-glycoprotein could have an influence on phenobarbital (PB) resistance, which occurs with high frequency in idiopathic epileptic Border Collies (BCs). Animals: Two hundred and thirty-six client-owned BCs from Switzerland and Germany including 25 with idiopathic epilepsy, of which 13 were resistant to PB treatment. METHODS: Prospective and retrospective case-control study. Data were collected retrospectively regarding disease status, antiepileptic drug (AED) therapy, and drug responsiveness. The frequency of a known mutation in the ABCB1 gene (4 base-pair deletion in the ABCB1 gene [c.296_299del]) was determined in all BCs. Additionally, the ABCB1 coding exons and flanking sequences were completely sequenced to search for additional variation in 41 BCs. Association analyses were performed in 2 case-control studies: idiopathic epileptic and control BCs and PB-responsive and resistant idiopathic epileptic BCs. RESULTS: One of 236 BCs (0.4%) was heterozygous for the mutation in the ABCB1 gene (c.296_299del). A total of 23 variations were identified in the ABCB1 gene: 4 in exons and 19 in introns. The G-allele of the c.-6-180T > G variation in intron 1 was significantly more frequent in epileptic BCs resistant to PB treatment than in epileptic BCs responsive to PB treatment (P(raw) = .0025). CONCLUSIONS AND CLINICAL IMPORTANCE: A variation in intron 1 of the ABCB1 gene is associated with drug responsiveness in BCs. This might indicate that regulatory mutations affecting the expression level of ABCB1 could exist, which may influence the reaction of a dog to AEDs.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

OBJECTIVE The steroidogenic acute regulatory protein (StAR) transports cholesterol to the mitochondria for steroidogenesis. Loss of StAR function causes lipoid congenital adrenal hyperplasia (LCAH) which is characterized by impaired synthesis of adrenal and gonadal steroids causing adrenal insufficiency, 46,XY disorder of sex development (DSD) and failure of pubertal development. Partial loss of StAR activity may cause adrenal insufficiency only. PATIENT A newborn girl was admitted for mild dehydration, hyponatremia, hyperkalemia and hypoglycaemia and had normal external female genitalia without hyperpigmentation. Plasma cortisol, 17OH-progesterone, DHEA-S, androstendione and aldosterone were low, while ACTH and plasma renin activity were elevated, consistent with the diagnosis of primary adrenal insufficiency. Imaging showed normal adrenals, and cytogenetics revealed a 46,XX karyotype. She was treated with fluids, hydrocortisone and fludrocortisone. DESIGN, METHODS AND RESULTS Genetic studies revealed a novel homozygous STAR mutation in the 3' acceptor splice site of intron 4, c.466-1G>A (IVS4-1G>A). To test whether this mutation would affect splicing, we performed a minigene experiment with a plasmid construct containing wild-type or mutant StAR gDNA of exons-introns 4-6 in COS-1 cells. The splicing was assessed on total RNA using RT-PCR for STAR cDNAs. The mutant STAR minigene skipped exon 5 completely and changed the reading frame. Thus, it is predicted to produce an aberrant and shorter protein (p.V156GfsX19). Computational analysis revealed that this mutant protein lacks wild-type exons 5-7 which are essential for StAR-cholesterol interaction. CONCLUSIONS STAR c.466-1A skips exon 5 and causes a dramatic change in the C-terminal sequence of the protein, which is essential for StAR-cholesterol interaction. This splicing mutation is a loss-of-function mutation explaining the severe phenotype of our patient. Thus far, all reported splicing mutations of STAR cause a severe impairment of protein function and phenotype.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The human GH gene is 1.7 kilobase pairs (kb) in length and is composed of five exons and four introns. This gene is expressed in the pituitary gland and encodes a 22 kDa protein. In addition to this predominant (75%) form, 5-10% of pituitary GH is present as a 20 kDa protein that has an amino acid (aa) sequence identical to the 22 kDa form except for a 15 aa internal deletion of residues 32-46 as a result of an alternative splicing event. Because it has been reported that non-22-kDa GH isoforms might be partly responsible for short stature and growth retardation in children, the aim of this study was to compare the impact of both 22 kDa and 20 kDa GH on GH receptor gene (GH receptor/GH binding protein (GHR/GHBP)) expression. Various concentrations of 20 kDa and 22 kDa GH (0, 2, 5, 12.5, 25, 50 and 150 ng/ml) were added to human hepatoma (HuH7) cells cultured in serum-free hormonally defined medium for 0, 1 and 2 h. Thereafter GHR/GHBP mRNA expression was measured by quantitative PCR. Addition of either 20 kDa or 22 kDa GH, at low or normal physiological concentrations (0, 2, 5, 12.5, 25 or 50 ng/ml) induced a dose-dependent increase in GHR/GHBP expression. However, a supraphysiological concentration of 20 kDa GH (150 ng/ml) resulted in a significantly lower (P<0.05) downregulation of GHR/GHBP gene transcription compared with the downregulation achieved by this concentration of 22 kDa GH. This difference might be explained by a decreased ability to form a 1 : 1 complex with GHR and/or GHBP, which normally occurs at high concentrations of GH. Nuclear run-on experiments and GHBP determinations confirmed the changes in GHR/GHBP mRNA levels. In conclusion, we report that both 20 kDa and 22 kDa GH, in low and normal physiological concentrations, have the same effect on regulation of GHR/GHBP gene transcription in a human hepatoma cell line. At a supraphysiological concentration of 150 ng/ml, however, 20 kDa GH has a less self-inhibitory effect than the 22 kDa form.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Fusobacterium nucleatum is a prominent member of the oral microbiota and is a common cause of human infection. F. nucleatum includes five subspecies: polymorphum, nucleatum, vincentii, fusiforme, and animalis. F. nucleatum subsp. polymorphum ATCC 10953 has been well characterized phenotypically and, in contrast to previously sequenced strains, is amenable to gene transfer. We sequenced and annotated the 2,429,698 bp genome of F. nucleatum subsp. polymorphum ATCC 10953. Plasmid pFN3 from the strain was also sequenced and analyzed. When compared to the other two available fusobacterial genomes (F. nucleatum subsp. nucleatum, and F. nucleatum subsp. vincentii) 627 open reading frames unique to F. nucleatum subsp. polymorphum ATCC 10953 were identified. A large percentage of these mapped within one of 28 regions or islands containing five or more genes. Seventeen percent of the clustered proteins that demonstrated similarity were most similar to proteins from the clostridia, with others being most similar to proteins from other gram-positive organisms such as Bacillus and Streptococcus. A ten kilobase region homologous to the Salmonella typhimurium propanediol utilization locus was identified, as was a prophage and integrated conjugal plasmid. The genome contains five composite ribozyme/transposons, similar to the CdISt IStrons described in Clostridium difficile. IStrons are not present in the other fusobacterial genomes. These findings indicate that F. nucleatum subsp. polymorphum is proficient at horizontal gene transfer and that exchange with the Firmicutes, particularly the Clostridia, is common.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Haldane (1935) developed a method for estimating the male-to-female ratio of mutation rate ($\alpha$) by using sex-linked recessive genetic disease, but in six different studies using hemophilia A data the estimates of $\alpha$ varied from 1.2 to 29.3. Direct genomic sequencing is a better approach, but it is laborious and not readily applicable to non-human organisms. To study the sex ratios of mutation rate in various mammals, I used an indirect method proposed by Miyata et al. (1987). This method takes advantage of the fact that different chromosomes segregate differently between males and females, and uses the ratios of mutation rate in sequences on different chromosomes to estimate the male-to-female ratio of mutation rate. I sequenced the last intron of ZFX and ZFY genes in 6 species of primates and 2 species of rodents; I also sequenced the partial genomic sequence of the Ube1x and Ube1y genes of mice and rats. The purposes of my study in addition to estimation of $\alpha$'s in different mammalian species, are to test the hypothesis that most mutations are replication dependent and to examine the generation-time effect on $\alpha$. The $\alpha$ value estimated from the ZFX and ZFY introns of the six primate specise is ${\sim}$6. This estimate is the same as an earlier estimate using only 4 species of primates, but the 95% confidence interval has been reduced from (2, 84) to (2, 33). The estimate of $\alpha$ in the rodents obtained from Zfx and Zfy introns is ${\sim}$1.9, and that deriving from Ube1x and Ube1y introns is ${\sim}$2. Both estimates have a 95% confidence interval from 1 to 3. These two estimates are very close to each other, but are only one-third of that of the primates, suggesting a generation-time effect on $\alpha$. An $\alpha$ of 6 in primates and 2 in rodents are close to the estimates of the male-to-female ratio of the number of germ-cell divisions per generation in humans and mice, which are 6 and 2, respectively, assuming the generation time in humans is 20 years and that in mice is 5 months. These findings suggest that errors during germ-cell DNA replication are the primary source of mutation and that $\alpha$ decreases with decreasing length of generation time. ^

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Transglutaminases are a family of calcium-dependent enzymes, that catalyze the covalent cross-linking of proteins by forming $\varepsilon(\gamma$-glutamyl)lysine isopeptide bonds. In order to investigate the molecular mechanisms regulating the expression of the tissue transglutaminase gene and to determine its biological functions, the goal of this research has been to clone and characterize the human tissue transglutaminase promoter. Thirteen clones of the tissue transglutaminase gene were obtained from the screening of a human placental genomic DNA library. A 1.74 Kb fragment derived from DNA located immediately upstream of the translation start site was subcloned and sequenced. Sequence analysis of this DNA fragment revealed that it contains a TATA box (TATAA), a CAAT box (GGACAAT), and a series of potential transcription factor binding sites and hormone response elements. Four regions of significant homology, a GC-rich region, a TG-rich region, an AG-rich region, and HR1, were identified by aligning 1.8 Kb of DNA flanking the human, mouse, and guinea pig tissue transglutaminase genes.^ To measure promoter activity, we subcloned the 1.74 Kb fragment of the tissue transglutaminase gene into a luciferase reporter vector to generate transglutaminase promoter/luciferase reporter constructs. Transfection experiments showed that this DNA segment includes a functional promoter with high constitutive activity. Deletion analysis revealed that the SP1 sites or corresponding sequences contribute to this activity. We investigated the role of DNA methylation in regulating the activity of the promoter and found that in vitro methylation of tissue transglutaminase promoter/luciferase reporter constructs suppressed their basal activity. Methylation of the promoter is inversely correlated with the expression of the tissue transglutaminase gene in vivo. These results suggest that DNA methylation may be one of the mechanisms regulating the expression of the gene. The tumor suppressor gene product p53 was also shown to inhibit the activity of the promoter, suggesting that induction of the tissue transglutaminase gene is not involved in the p53-dependent programmed cell death pathway. Although retinoids regulate the expression of the tissue transglutaminase gene in vivo, retinoid-inducible activity can not be identified in 3.7 Kb of DNA 5$\sp\prime$ to the tissue transglutaminase gene.^ The structure of the 5$\sp\prime$ end of the tissue transglutaminase gene was mapped. Alignment analysis of the human tissue transglutaminase gene with other human transglutaminases showed that tissue transglutaminase is the simplest member of transglutaminase superfamily. Transglutaminase genes show a conserved core of exons and introns but diverse N-terminuses and promoters. These observations suggest that key regulatory sequences and promoter elements have been appended upstream of the core transglutaminase gene to generate the diversity of regulated expression and regulated activity characteristic of the transglutaminase gene family. ^

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Tumor necrosis factor receptor p75/80 ((TNF-R p75/80) is a 75 kDa type 1 transmembrane protein expressed predominately on cells of hematopoietic lineage. TNF-R p75/80 belongs to the TNF receptor superfamily characterized by cysteine-rich extracellular regions composed of three to six disulfide-linked domains. In the present report, we have characterized, for the first time, the complete gene structure for human TNF-R p75/80 which spans approximately 43 kbp. The gene consists of 10 exons (ranging from 34 bp to 2.5 kbp) and 9 introns (343 bp to 19 kbp). Consensus elements for transcription factors involved in T cell development and activation were noted in the 5$\sp\prime$ flanking region including TCF-1, Ikaros, AP-1, CK-2, IL-6RE, ISRE, GAS, NF-$\kappa$B and SP1, as well as an unusually high GC content and CpG frequency that appears characteristic of some TNF-R family members. The unusual (GATA)$\sb{\rm n}$ and (GAA)(GGA) repeats found within intron 1 may prove useful for further genome analysis within the 1p36 chromosomal locus. The human TNF-R p75/80 gene structure will permit further assessment of its involvement in normal hematopoietic cell development and function, autoimmune disease, and non-random translocations in hematopoietic malignancies. The region 1.8 kb 5$\sp\prime$ of the ATG was able to drive luciferase expression when transfected into cell lines expressing TNF-R p75/80. Further characterization of the 5$\sp\prime$-regulatory region will aid in determining factors and signal transduction pathways involved in regulating TNF-R p75/80 expression. ^

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The myogenin gene encodes an evolutionarily conserved basic helix-loop-helix transcription factor that regulates the expression of skeletal muscle-specific genes and its homozygous deletion results in mice who die of respiratory failure at birth. The histology of skeletal muscle in the myogenin null mice is reminiscent of that found in some severe congenital myopathy patients, many of whom also die of respiratory complications and provides the rationale that an aberrant human myogenin (myf4) coding region could be associated with some congenital myopathy conditions.^ With PCR, we found similarly sized amplimers for the three exons of the myogenin gene in 37 patient and 40 control samples. In contrast to the GeneBank sequence for human myogenin, we report several differences in flanking and coding regions plus an additional 659 and 498 bps in the first and second introns, respectively, in all patients and controls. We also find a novel (CA)-dinucleotide repeat in the second intron. No causative mutations were detected in the myogenin coding regions of genomic DNA from patients with severe congenital myopathy.^ Severe congenital myopathies in humans are often associated with respiratory complications and pulmonary hypoplasia. We have employed the myogenin null mouse, which lacks normal development of skeletal muscle fibers as a genetically defined severe congenital myopathy mouse model to evaluate the effect of absent fetal breathing movement on pulmonary development.^ Significant differences are observed at embryonic days E14, E17 and E20 of lung:body weight, total DNA and histologically, suggesting that the myogenin null lungs are hypoplastic. RT-PCR, in-situ immunofluorescence and EM reveal pneumocyte type II differentiation in both null and wild lungs as early as E14. However, at E14, myogenin null lungs have decreased BrdU incorporation while E17 through term, augmented cell death is detected in the myogenin null lungs, not seen in wild littermates. Absent mechanical forces appear to impair normal growth, but not maturation, of the developing lungs in myogenin null mouse.^ These investigations provide the basis for delineating the DNA sequence of the myogenin gene and and highlight the importance of skeletal muscle development in utero for normal lung organogenesis. My observation of no mutations within the coding regions of the human myogenin gene in DNA from patients with severe congenital myopathy do not support any association with this condition. ^

Relevância:

10.00% 10.00%

Publicador:

Resumo:

As in all metazoans, the replication-dependent histone genes of Caenorhabditis elegans lack introns and contain a short hairpin structure in the 3' untranslated region. This hairpin structure is a key element for post-transcriptional regulation of histone gene expression and determines mRNA 3' end formation, nuclear export, translation and mRNA decay. All these steps contribute to the S-phase-specific expression of the replication-dependent histone genes. The hairpin structure is the binding site for histone hairpin-binding protein that is required for hairpin-dependent regulation. Here, we demonstrate that the C. elegans histone hairpin-binding protein gene is transcribed in dividing cells during embryogenesis and postembryonic development. Depletion of histone hairpin-binding protein (HBP) function in early embryos using RNA-mediated interference leads to an embryonic-lethal phenotype brought about by defects in chromosome condensation. A similar phenotype was obtained by depleting histones H3 and H4 in early embryos, indicating that the defects in hairpin-binding protein-depleted embryos are caused by reduced histone biosynthesis. We have confirmed this by showing that HBP depletion reduces histone gene expression. Depletion of HBP during postembryonic development also results in defects in cell division during late larval development. In addition, we have observed defects in the specification of vulval cell fate in animals depleted for histone H3 and H4, which indicates that histone proteins are required for cell fate regulation during vulval development.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

To investigate the evolution of globin genes in the genus Xenopus, we have determined the primary structure of the related adult alpha I- and alpha II-globin genes of X. laevis and of the adult alpha-globin gene of X. tropicalis, including their 5'-flanking regions. All three genes are comprised of three exons and two introns at homologous positions. The exons are highly conserved and code for 141 amino acids. By contrast, the corresponding introns vary in length and show considerable divergence. Comparison of 900 bp of the 5'-flanking region revealed that the X. tropicalis gene contains a conserved proximal 310-bp promoter sequence, comprised of the canonical TATA and CCAAT motifs at homologous positions, and five conserved elements in the same order and at similar positions as previously shown for the corresponding genes of X. laevis. We therefore conclude that these conserved upstream elements may represent regulatory sequences for cell-specific regulation of the adult Xenopus globin genes.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

CONTENTS. 1. Did life begin with catalytic RNA?–2. Self-splicing and self-cleaving RNAs–2.1 Self-splicing of group I introns – 2.2 Self-splicing of group II introns – 2.3 Self-cleaving RNAs–3. Splicing mediated by trans-acting factors–3.1 Group III introns – 3.2 Splicing of nuclear pre-mRNAs – 3.3 Trans-splicing – 3.4 Is nuclear pre-mRNA splicing evolutionarily related to group I and group II self-splicing?– 3.5 Non-RNA mediated splicing of tRNAs–4. Processing of ribosomal precursor RNAs–5. Processing of pre-mRNA 3′ ends–5.1 Polyadenylation – 5.2 Histone pre-mRNA 3′ processing–6. Other RNPs involved in metabolic mechanisms–6.1 5′ end processing of pre-tRNAs by RNase P – 6.2 The signal recognition particle – 6.3 Telomerase – 6.4 RNA editing in trypanosomatid mitochondria–7. Why RNA?

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Multiple osteochondromas (also called hereditary multiple exostoses) is an autosomal dominant disorder characterized by multiple cartilaginous tumors, which are caused by mutations in the genes for exostosin-1 (EXT1) and exostosin-2 (EXT2). The goal of this study was to elucidate the genetic alterations in a family with three affected members. Isolation of RNA from the patients' blood followed by reverse transcription and PCR amplification of selected fragments showed that the three patients lack a specific region of 90 bp from their EXT1 mRNA. This region corresponds to the sequence of exon 8 from the EXT1 gene. No splice site mutation was found around exon 8. However, long-range PCR amplification of the region from intron 7 to intron 8 indicated that the three patients contain a deletion of 4318 bp, which includes exon 8 and part of the flanking introns. There is evidence that the deletion was caused by non-homologous end joining because the breakpoints are not located within a repetitive element, but contain multiple copies of the deletion hotspot sequence TGRRKM. Exon 8 encodes part of the active site of the EXT1 enzyme, including the DXD signature of all UDP-sugar glycosyltransferases. It is conceivable that the mutant protein exerts a dominant negative effect on the activity of the EXT glycosyltransferase since it might interact with normal copies of the enzyme to form an inactive hetero-oligomeric complex. We suggest that sequencing of RNA might be superior to exome sequencing to detect short deletions of a single exon.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

DNA sequence variation is currently a major source of data for studying human origins, evolution, and demographic history, and for detecting linkage association of complex diseases. In this dissertation, I investigated DNA variation in worldwide populations from two ∼10 kb autosomal regions on 22q11.2 (noncoding) and 1q24 (introns). A total of 75 variant sites were found among 128 human sequences in the 22q11.2 region, yielding an estimate of 0.088% for nucleotide diversity (π), and a total of 52 variant sites were found among 122 human sequences in the 1q24 region with an estimated π value of 0.057%. The data from these two regions and a 10 kb noncoding region on Xq13.3 all show a strong excess of low-frequency variants in comparison to that expected from an equilibrium population, indicating a relatively recent population expansion. The effective population sizes estimated from the three regions were 11,000, 12,700, and 8,600, respectively, which are close to the commonly used value of 10,000. In each of the two autosomal regions, the age of the most recent common ancestor (MRCA) was estimated to be older than 1 million years among all the sequences and ∼600,000 years among non-African sequences, providing first evidence from autosomal noncoding or intronic regions for a genetic history of humans much more ancient than the emergence of modern humans. The ancient genetic history of humans indicates no severe bottleneck during the evolution of humans in the last half million years; otherwise, much of the ancient genetic history would have been lost during a severe bottleneck. This study strongly suggests that both the “out of Africa” and the multiregional models are too simple for explaining the evolution of modern humans. A compilation of genome-wide data revealed that nucleotide diversity is highest in autosomal regions, intermediate in X-linked regions, and lowest in Y-linked regions. The data suggest the existence of background selection or selective sweep on Y-linked loci. In general, the nucleotide diversity in humans is low compared to that in chimpanzee and Drosophila populations. ^

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Nonsense-mediated decay (NMD) degrades aberrant transcripts containing premature termination codons (PTCs). The T-cell receptor (TCR) locus undergoes error-prone rearrangements that frequently acquire PTCs. Transcripts harboring PTCs from this locus are downregulated much more than transcripts from non-rearranging genes. Efficient splicing is essential for this robust downregulation. ^ Here I show that TCR NMD is unique in another respect: it is not impaired by RNAi-mediated depletion of the NMD factor UPF3b. This differentiates TCR transcripts from classical NMD (assayed using β-globin or triose phosphate isomerase transcripts), which does depend on UPF3b. Depletion of UPF3a, which encodes a gene related to UPF3b, also had no effect on TCR NMD. Mapping experiments identified TCR sequences that when deleted or mutated caused a switch to UPF3b dependence. Since UPF3b dependence was invariably accompanied by less efficient RNA splicing, this suggests that UPF3b-dependent NMD occurs when transcripts are generated by inefficient splicing. Microarray analysis revealed the existence of many NMD-targeted mRNAs from wild-type genes whose downregulation is impervious to UPF3b depletion. This suggests the existence of an alternative NMD pathway independent of UPF3b that is widely used to downregulate the level of both normal and mutant transcripts. ^ During the course of my studies, I also found that the function of UPF3a is fundamentally distinct from that of UPF3b in several aspects. First, classical NMD failed to be impaired by UPF3a depletion, whereas it was reversed by UPF3b depletion. Second, UPF3a depletion had no effect on NMD elicited by tethered UPF2, whereas UPF3b depletion blocked this response. Thus, UPF3a does not function in classical NMD. Third, UPF3b depletion upregulated the expression of UPF3a, whereas UPF3a depletion had no effect on UPF3b expression. This suggests that a UPF3b-mediated feedback network exists that regulates the UPF3a expression. Lastly, UPF3a depletion but not UPF3b depletion significantly upregulated TCR precursor RNAs. This suggests that UPF3a, not UPF3b, functions in the surveillance of precursor RNAs, which typically contain many PTCs in the introns. Collectively, my data suggests that UPF3a and UPF3b are not functionally redundant, as previously thought, but instead have separable functions. ^

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Translation termination as a result of premature nonsense codon-incorporation in a RNA transcript can lead to the production of aberrant proteins with gain-of-function or dominant negative properties that could have deletrious effects on the cell. T-cell Receptor (TCR) genes acquire premature termination codons two-thirds of the time as a result of the error-prone programmed rearrangement events that normally occur during T-cell development. My studies have focused on the fate of TCR precursor mRNAs in response to in-frame nonsense mutations. ^ Previous published studies from our laboratory have shown that TCR precursor mRNAs are subject to nonsense mediated upregulation of pre-mRNA (NMUP). In this dissertation, I performed substitution and deletion analysis to characterize specific regions of TCR which are required to elicit NMUP. I performed frame- and factor-dependence studies to determine its relationship with other nonsense codon induced responses using several approaches including (i) translation dependence studies (ii) deletion and mutational analysis, as well as (iii) siRNA mediated knockdown of proteins involved. I also addressed the underlying molecular mechanism for this pre-mRNA upregulation by (i) RNA half-life studies using a c-fos inducible promoter, and (ii) a variety of assays to determine pre-mRNA splicing efficiency. ^ Using these approaches, I have identified a region of TCR that is both necessary and sufficient to elicit (NMUP). I have also found that neither cytoplasmic translation machinery nor the protein UPF1 are involved in eliciting this nuclear event. I have shown that the NMUP can be induced not only by nonsense and frameshift mutations, but also missense mutations that disrupt a cis splicing element in the exon that contains the mutation. However, the effect of nonsense mutations on pre-mRNA is unique and distinguishable from that of missense mutations in that nonsense mutations can upregulate pre-mRNA in a frame-dependent manner. Lastly, I provide evidence that NMUP occurs by a mechanism in which nonsense mutations inhibit the splicing of introns. In summary, I have found that TCR precursor mRNAs are subject to multiple forces involving both RNA splicing and translation that can either increase or decrease the levels of these precursor mRNAs. ^