987 resultados para II AT(1)
Resumo:
Treatment of hypertension remains a difficult task despite the availability of different types of medications lowering blood pressure by different mechanisms. In order to reach the target blood pressures recommended today combination therapy is required in most patients. The co-administration of two drugs with different impacts on the cardiovascular system markedly increases the antihypertensive effectiveness without altering adversely tolerability. Fixed low-dose combinations are becoming a valuable option not only as second-line, but also as first-line therapy. In this respect the co-administration of thiazide diuretic with an AT(1)-receptor blocker is particularly appealing. The diuretic-induced decrease in total body sodium activates the renin-angiotensin system, thus rendering blood pressure maintenance angiotensin II-dependent. During blockade of the renin-angiotensin system low doses of thiazides generally suffice, allowing the prevention of undesirable metabolic effects. Also, blockade of the AT(1)-receptor, particularly when angiotensin II production is enhanced in response to diuretic therapy, is expected to be beneficial, since angiotensin II seems to contribute importantly to the pathogenesis of cardiovascular and renal complications of hypertension.
Resumo:
Angiotensin II is a potent arterial vasoconstrictor and induces hypertension. Angiotensin II also exerts a trophic effect on cardiomyocytes in vitro. The goals of the present study were to document an in vivo increase in cardiac angiotensins in the absence of elevated plasma levels or hypertension and to investigate prevention or regression of ventricular hypertrophy by renin-angiotensin system blockade. We demonstrate that high cardiac angiotensin II is directly responsible for right and left ventricular hypertrophy. We used transgenic mice overexpressing angiotensinogen in cardiomyocytes characterized by cardiac hypertrophy without fibrosis and normal blood pressure. Angiotensin-converting enzyme inhibition and angiotensin II type 1 receptor blockade prevent or normalize ventricular hypertrophy. Surprisingly, in control mice, receptor blockade decreases tissue angiotensin II despite increased plasma levels. This suggests that angiotensin II may be protected from metabolization by binding to its receptor. Blocking of the angiotensin II type 1 receptor rather than enhanced stimulation of the angiotensin II type 2 receptor may prevent remodeling and account for the beneficial effects of angiotensin antagonists.
Resumo:
BACKGROUND: Differences in morbidity and mortality between socioeconomic groups constitute one of the most consistent findings of epidemiologic research. However, research on social inequalities in health has yet to provide a comprehensive understanding of the mechanisms underlying this association. In recent analysis, we showed health behaviours, assessed longitudinally over the follow-up, to explain a major proportion of the association of socioeconomic status (SES) with mortality in the British Whitehall II study. However, whether health behaviours are equally important mediators of the SES-mortality association in different cultural settings remains unknown. In the present paper, we examine this issue in Whitehall II and another prospective European cohort, the French GAZEL study. METHODS AND FINDINGS: We included 9,771 participants from the Whitehall II study and 17,760 from the GAZEL study. Over the follow-up (mean 19.5 y in Whitehall II and 16.5 y in GAZEL), health behaviours (smoking, alcohol consumption, diet, and physical activity), were assessed longitudinally. Occupation (in the main analysis), education, and income (supplementary analysis) were the markers of SES. The socioeconomic gradient in smoking was greater (p<0.001) in Whitehall II (odds ratio [OR] = 3.68, 95% confidence interval [CI] 3.11-4.36) than in GAZEL (OR = 1.33, 95% CI 1.18-1.49); this was also true for unhealthy diet (OR = 7.42, 95% CI 5.19-10.60 in Whitehall II and OR = 1.31, 95% CI 1.15-1.49 in GAZEL, p<0.001). Socioeconomic differences in mortality were similar in the two cohorts, a hazard ratio of 1.62 (95% CI 1.28-2.05) in Whitehall II and 1.94 in GAZEL (95% CI 1.58-2.39) for lowest versus highest occupational position. Health behaviours attenuated the association of SES with mortality by 75% (95% CI 44%-149%) in Whitehall II but only by 19% (95% CI 13%-29%) in GAZEL. Analysis using education and income yielded similar results. CONCLUSIONS: Health behaviours were strong predictors of mortality in both cohorts but their association with SES was remarkably different. Thus, health behaviours are likely to be major contributors of socioeconomic differences in health only in contexts with a marked social characterisation of health behaviours. Please see later in the article for the Editors' Summary.
Resumo:
Glitazones are efficient insulin sensitizers that blunt the effects of angiotensin II (ANG II) in the rat. Sodium chloride is another important modulator of the systemic and renal effects of ANG II. Whether glitazones interfere with the interaction between sodium and the response to ANG II is not known. Therefore, we investigated the effects of pioglitazone on the relationship between sodium and the systemic and renal effects of ANG II in rats. Pioglitazone, or vehicle, was administered for 4 wk to 8-wk-old obese Zucker rats. Animals were fed a normal-sodium (NS) or a high-sodium (HS) diet. Intravenous glucose tolerance tests, systemic and renal hemodynamic responses to ANG II, and the renal ANG II binding and expression of ANG II type 1 (AT(1)) receptors were measured. The results of our study were that food intake and body weight increased, whereas blood pressure, heart rate, filtration fraction, and insulin levels decreased significantly with pioglitazone in obese rats on both diets. Pioglitazone blunted the systemic response to ANG II and abolished the increased responsiveness to ANG II induced by a HS diet. Pioglitazone modified the renal hemodynamic response to changes in salt intake while maintaining a lower filtration fraction with ANG II perfusion. These effects were associated with a decrease in the number and expression of the AT(1) receptor in the kidney. In conclusion, these data demonstrate that the peroxisome proliferator-activated receptor-gamma agonist pioglitazone modifies the physiological relationship between sodium chloride and the response to ANG II in insulin-resistant rats.
Resumo:
Patients with rectal cancer are at high risk of disease recurrence despite neoadjuvant radiochemotherapy with 5-Fluorouracil (5FU), a regimen that is now widely applied. In order to develop a regimen with increased antitumour activity, we previously established the recommended dose of neoadjuvant CPT-11 (three times weekly 90 mg m(-2)) concomitant to hyperfractionated accelerated radiotherapy (HART) followed by surgery within 1 week. Thirty-three patients (20 men) with a locally advanced adenocarcinoma of the rectum were enrolled in this prospective phase II trial (1 cT2, 29 cT3, 3 cT4 and 21 cN+). Median age was 60 years (range 43-75 years). All patients received all three injections of CPT-11 and all but two patients completed radiotherapy as planned. Surgery with total mesorectal excision (TME) was performed within 1 week (range 2-15 days). The preoperative chemoradiotherapy was overall well tolerated, 24% of the patients experienced grade 3 diarrhoea that was easily manageable. At a median follow-up of 2 years no local recurrence occurred, however, nine patients developed distant metastases. The 2-year disease-free survival was 66% (95% confidence interval 0.48-0.83). Neoadjuvant CPT-11 and HART allow for excellent local control; however, distant relapse remains a concern in this patient population.
Resumo:
AIMS: Connexins (Cxs) play a role in the contractility of the aorta wall. We investigated how connexins of the endothelial cells (ECs; Cx37, Cx40) and smooth muscle cells (SMCs; Cx43, Cx45) of the aorta change during renin-dependent and -independent hypertension. METHODS AND RESULTS: We subjected both wild-type (WT) mice and mice lacking Cx40 (Cx40(-/-)), to either a two-kidney, one-clip procedure or to N-nitro-l-arginine-methyl-ester treatment, which induce renin-dependent and -independent hypertension, respectively. All hypertensive mice featured a thickened aortic wall, increased levels of Cx37 and Cx45 in SMC, and of Cx40 in EC (except in Cx40(-/-) mice). Cx43 was up-regulated, with no effect on its S368 phosphorylation, only in the SMCs of renin-dependent models of hypertension. Blockade of the renin-angiotensin system of Cx40(-/-) mice normalized blood pressure and prevented both aortic thickening and Cx alterations. Ex vivo exposure of WT aortas, carotids, and mesenteric arteries to physiologically relevant levels of angiotensin II (AngII) increased the levels of Cx43, but not of other Cx. In the aortic SMC line of A7r5 cells, AngII activated kinase-dependent pathways and induced binding of the nuclear factor-kappa B (NF-kappaB) to the Cx43 gene promoter, increasing Cx43 expression. CONCLUSION: In both large and small arteries, hypertension differently regulates Cx expression in SMC and EC layers. Cx43 is selectively increased in renin-dependent hypertension via an AngII activation of the extracellular signal-regulated kinase and NF-kappaB pathways.
Resumo:
INTRODUCTION: The evaluation of a new drug in normotensive volunteers provides important pharmacodynamic and pharmacokinetic information as long as the compound has a specific mechanism of action which can be evaluated in healthy subjects as well as in patients. The purpose of the present paper is to discuss the results that have been obtained in normal volunteers with the specific angiotensin II receptor antagonist, losartan potassium. DOSE-FINDING: Over the last few years, studies in normotensive subjects have demonstrated that the minimal dose of losartan that produces maximal efficacy is 40-80 mg. Losartan has a long duration of action and its ability to produce a sustained blockade of the renin-angiotensin system is due almost exclusively to the active metabolite E3174. HORMONAL EFFECTS: Angiotensin II receptor blockade with losartan induces an expected increase in plasma renin activity and plasma angiotensin II levels. A decrease in plasma aldosterone levels has been found only with a high dose of losartan (120 mg). RENAL AND BLOOD PRESSURE EFFECTS: In normotensive subjects, losartan has little or no effect on blood pressure unless the subjects are markedly salt-depleted. Losartan causes no change in the glomerular filtration rate and either no modification or only a slight increase in renal blood flow. Losartan significantly increases urinary sodium excretion, however, and surprisingly produces a transient rise in urinary potassium excretion. Finally, losartan increases uric acid excretion and lowers plasma uric acid levels. CONCLUSIONS: These results suggest that losartan is an effective angiotensin II receptor antagonist in normal subjects. Its safety and clinical efficacy in hypertensive patients will be addressed in large clinical trials.
Resumo:
Angiotensin II can raise blood pressure rapidly by inducing direct vasoconstriction and by activating the sympathetic nervous system via central and peripheral mechanisms. In addition, this peptide may act as a growth factor to cause vascular and cardiac hypertrophy (CVH). The structural changes caused by hypertension can therefore be amplified by angiotensin II. Blockade of angiotensin II generation with angiotensin-converting enzyme (ACE) inhibitors appears to be particularly effective in preventing the development of cardiovascular hypertrophy. This beneficial effect might be related to some extent to local accumulation of bradykinin. ACE is one of the enzymes physiologically involved in bradykinin degradation. Treatment of hypertensive rats with a selective bradykinin antagonist can attenuate the blood pressure-lowering effect of ACE inhibition and render less effective the prevention of intimal thickening after endothelial removal from the rat carotid artery. Bradykinin is a vasodilator that acts by increasing the release of endothelium-derived factors such as nitric oxide and prostacyclin, which may have antiproliferative activity. However, blockade of the renin-angiotensin system with an angiotensin II subtype 1-receptor antagonist is also effective in preventing cardiac hypertrophy and neointimal proliferation after endothelial injury. Therefore, the exact contribution of bradykinin to the beneficial effects of ACE inhibition on cardiovascular hypertrophy remains to be further explored.
Resumo:
Endocannabinoids and cannabinoid 1 (CB(1)) receptors have been implicated in cardiac dysfunction, inflammation, and cell death associated with various forms of shock, heart failure, and atherosclerosis, in addition to their recognized role in the development of various cardiovascular risk factors in obesity/metabolic syndrome and diabetes. In this study, we explored the role of CB(1) receptors in myocardial dysfunction, inflammation, oxidative/nitrative stress, cell death, and interrelated signaling pathways, using a mouse model of type 1 diabetic cardiomyopathy. Diabetic cardiomyopathy was characterized by increased myocardial endocannabinoid anandamide levels, oxidative/nitrative stress, activation of p38/Jun NH(2)-terminal kinase (JNK) mitogen-activated protein kinases (MAPKs), enhanced inflammation (tumor necrosis factor-α, interleukin-1β, cyclooxygenase 2, intracellular adhesion molecule 1, and vascular cell adhesion molecule 1), increased expression of CB(1), advanced glycation end product (AGE) and angiotensin II type 1 receptors (receptor for advanced glycation end product [RAGE], angiotensin II receptor type 1 [AT(1)R]), p47(phox) NADPH oxidase subunit, β-myosin heavy chain isozyme switch, accumulation of AGE, fibrosis, and decreased expression of sarcoplasmic/endoplasmic reticulum Ca(2+)-ATPase (SERCA2a). Pharmacological inhibition or genetic deletion of CB(1) receptors attenuated the diabetes-induced cardiac dysfunction and the above-mentioned pathological alterations. Activation of CB(1) receptors by endocannabinoids may play an important role in the pathogenesis of diabetic cardiomyopathy by facilitating MAPK activation, AT(1)R expression/signaling, AGE accumulation, oxidative/nitrative stress, inflammation, and fibrosis. Conversely, CB(1) receptor inhibition may be beneficial in the treatment of diabetic cardiovascular complications.
Resumo:
The ONgoing Telmisartan Alone and in combination with Ramipril Global Endpoint Trial (ONTARGET()) showed that the angiotensin II receptor blocker (ARB) telmisartan was as protective as the reference-standard ramipril in a broad cross-section of patients at increased cardiovascular risk, but was better tolerated. Telmisartan has a unique profile among ARBs, with a high affinity for the angiotensin II type 1 receptor, a long duration of receptor binding, a high lipophilicity and a long plasma half life. This leads to sustained and powerful blood pressure lowering when compared with the first marketed ARBs, such as losartan and valsartan. Some pharmacological properties of telmisartan clearly distinguish it from other members of the ARB class and may contribute to the clinical effects seen with telmisartan. A class effect for ARBs cannot be assumed. To date, telmisartan is the only ARB that has been shown to reduce cardiovascular risk in at-risk cardiovascular patients.
Resumo:
PURPOSE: The MOSAIC (Multicenter International Study of Oxaliplatin/Fluorouracil/Leucovorin in the Adjuvant Treatment of Colon Cancer) study has demonstrated 3-year disease-free survival (DFS) and 6-year overall survival (OS) benefit of adjuvant oxaliplatin in stage II to III resected colon cancer. This update presents 10-year OS and OS and DFS by mismatch repair (MMR) status and BRAF mutation. METHODS: Survival actualization after 10-year follow-up was performed in 2,246 patients with resected stage II to III colon cancer. We assessed MMR status and BRAF mutation in 1,008 formalin-fixed paraffin-embedded specimens. RESULTS: After a median follow-up of 9.5 years, 10-year OS rates in the bolus/infusional fluorouracil plus leucovorin (LV5FU2) and LV5FU2 plus oxaliplatin (FOLFOX4) arms were 67.1% versus 71.7% (hazard ratio [HR], 0.85; P = .043) in the whole population, 79.5% versus 78.4% for stage II (HR, 1.00; P = .980), and 59.0% versus 67.1% for stage III (HR, 0.80; P = .016) disease. Ninety-five patients (9.4%) had MMR-deficient (dMMR) tumors, and 94 (10.4%) had BRAF mutation. BRAF mutation was not prognostic for OS (P = .965), but dMMR was an independent prognostic factor (HR, 2.02; 95% CI, 1.15 to 3.55; P = .014). HRs for DFS and OS benefit in the FOLFOX4 arm were 0.48 (95% CI, 0.20 to 1.12) and 0.41 (95% CI, 0.16 to 1.07), respectively, in patients with stage II to III dMMR and 0.50 (95% CI, 0.25 to 1.00) and 0.66 (95% CI, 0.31 to 1.42), respectively, in those with BRAF mutation. CONCLUSION: The OS benefit of oxaliplatin-based adjuvant chemotherapy, increasing over time and with the disease severity, was confirmed at 10 years in patients with stage II to III colon cancer. These updated results support the use of FOLFOX in patients with stage III disease, including those with dMMR or BRAF mutation.
Resumo:
(ANP, 1 µM) on the kinetics of bicarbonate reabsorption in the rat middle proximal tubule, we performed in vivo experiments using a stopped-flow microperfusion technique with the determination of lumen pH by Sb microelectrodes. These studies confirmed that ANG II added to the luminal or peritubular capillary perfusion fluid stimulates proximal bicarbonate reabsorption and showed that ANP alone does not affect this process, but impairs the stimulation caused by ANG II. We also studied the effects and the interaction of these hormones in cortical distal nephron acidification. Bicarbonate reabsorption was evaluated by the acidification kinetic technique in early (ED) and late (LD) distal tubules in rats during in vivo stopped-flow microperfusion experiments. The intratubular pH was measured with a double-barreled microelectrode with H+-sensitive resin. The results indicate that ANG II acted by stimulating Na+/H+ exchange in ED (81%) and LD (54%) segments via activation of AT1 receptors, as well as vacuolar H+-ATPase in LD segments (33%). ANP did not affect bicarbonate reabsorption in either segment and, as opposed to what was seen in the proximal tubule, did not impair the stimulation caused by ANG II. To investigate the mechanism of action of these hormones in more detail, we studied cell pH dependence on ANG II and ANP in MDCK cells using the fluorescent probe BCECF. We showed that the velocity of cell pH recovery was almost abolished in the absence of Na+, indicating that it is dependent on Na+/H+ exchange. ANP (1 µM) alone had no effect on this recovery but reversed both the acceleration of H+ extrusion at low ANG II levels (1 pM and 1 nM), and inhibition of H+ extrusion at higher ANG II levels (100 nM). To obtain more information on the mechanism of interaction of these hormones, we also studied their effects on the regulation of intracellular free calcium concentration, [Ca2+]i, monitored with the fluorescent probe Fura-2 in MDCK cells in suspension. The data indicate that the addition of increasing concentrations of ANG II (1 pM to 1 µM) to the cell suspension led to a progressive increase in [Ca2+]i to 2-3 times the basal level. In contrast, the addition of ANP (1 µM) to the cell suspension led to a very rapid 60% decrease in [Ca2+]i and reduced the increase elicited by ANG II, thus modulating the effect of ANG II on [Ca2+]i. These results may indicate a role of [Ca2+]i in the regulation of the H+ extrusion process mediated by Na+/H+ exchange and stimulated/impaired by ANG II. The data are compatible with stimulation of Na+/H+ exchange by increases of [Ca2+]i in the lower range, and inhibition at high [Ca2+]i levels
Resumo:
Accumulating evidence suggests that angiotensin-(1-7) (Ang-(1-7)) is an important component of the renin-angiotensin system and that the actions of the peptide may either contribute to or oppose those of Ang II. Ang-(1-7) can be converted directly from Ang I bypassing prerequisite formation of Ang II. Formation of Ang-(1-7) is under the control of at least three endopeptidases depending on the tissue compartment and include neprilysin, thimet oligopeptidase and prolyl oligopeptidase. Both neprilysin and thimet oligopeptidase are also involved in the metabolism of bradykinin and the atrial natriuretic peptide. Moreover, recent studies suggest that in addition to Ang I and bradykinin, Ang-(1-7) is an endogenous substrate for angiotensin converting enzyme. These enzymatic pathways may contribute to a complex relationship between the hypertensive actions of Ang II and various vasodepressor peptides from either the renin-angiotensin system or other peptide systems. Ang-(1-7) is devoid of the vasoconstrictor, central pressor, or thirst-stimulating actions associated with Ang II. In fact, new findings reveal depressor, vasodilator, and antihypertensive actions that may be more apparent in hypertensive animals or humans. Thus, Ang-(1-7) may oppose the actions of Ang II directly or as a result of increasing prostaglandins or nitric oxide. In this review, we examine the mechanisms by which Ang-(1-7) may contribute to cardiovascular regulation.
Resumo:
The mechanism by which Ang II stimulates the growth of vascular smooth muscle cells was investigated by measuring the phosphorylation of mitogen-activated protein kinases ERK 1 and ERK 2. Ca2+ ionophore was found to have effects practically analogous to Ang II. We found that the signaling pathway involves the activation of epidermal growth factor receptor (EGFR) kinase, activation of the adaptor proteins Shc and Grb2, and the small G-protein Ras. Although the mechanism of AT1- (or Ca2+)-induced activation of EGFR is not yet clear, we have found that calcium-dependent protein kinase CAKß/PYK2 and c-Src are involved in this process. These studies indicate a transactivation mechanism that utilizes EGFR as a bridge between a Gq-coupled receptor and activation of phosphotyrosine generation.
Resumo:
Diseases such as hypertension, atherosclerosis, hyperlipidemia, and diabetes are associated with vascular functional and structural changes including endothelial dysfunction, altered contractility and vascular remodeling. Cellular events underlying these processes involve changes in vascular smooth muscle cell (VSMC) growth, apoptosis/anoikis, cell migration, inflammation, and fibrosis. Many factors influence cellular changes, of which angiotensin II (Ang II) appears to be amongst the most important. The physiological and pathophysiological actions of Ang II are mediated primarily via the Ang II type 1 receptor. Growing evidence indicates that Ang II induces its pleiotropic vascular effects through NADPH-driven generation of reactive oxygen species (ROS). ROS function as important intracellular and intercellular second messengers to modulate many downstream signaling molecules, such as protein tyrosine phosphatases, protein tyrosine kinases, transcription factors, mitogen-activated protein kinases, and ion channels. Induction of these signaling cascades leads to VSMC growth and migration, regulation of endothelial function, expression of pro-inflammatory mediators, and modification of extracellular matrix. In addition, ROS increase intracellular free Ca2+ concentration ([Ca2+]i), a major determinant of vascular reactivity. ROS influence signaling molecules by altering the intracellular redox state and by oxidative modification of proteins. In physiological conditions, these events play an important role in maintaining vascular function and integrity. Under pathological conditions ROS contribute to vascular dysfunction and remodeling through oxidative damage. The present review focuses on the biology of ROS in Ang II signaling in vascular cells and discusses how oxidative stress contributes to vascular damage in cardiovascular disease.