824 resultados para IEEE 802.11. LVWNet. LFS. Wireless. Linux. Testbed. Prototyping


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Este trabalho propõe a análise da comunicação sem fio para um sistema de controle distribuído de semáforos, a partir da revisão das literaturas, realização de simulações e experimentos, os quais consideram as especificações estabelecidas para o sistema de semáforos. As simulações e os experimentos se baseiam na avaliação do comportamento da comunicação perante a alteração de alguns parâmetros de configuração da rede. O estudo apresentado envolve análises relacionadas ao padrão IEEE 802.11g e às definições da camada física apresentadas nas especificações do padrão. Os métodos utilizados envolvem o estudo e experimentação de parâmetros relacionados à potência de transmissão e recepção, além de análise dos esquemas de modulação utilizados pelo padrão IEEE 802.11g. A metodologia aplicada a este trabalho envolve o conhecimento das características e capacidade dos esquemas de modulação responsáveis pela definição das taxas de transmissão. As análises mostram que a possibilidade de adequação dos parâmetros de configuração de rede, levando em consideração o cenário de aplicação, pode ser um fator essencial para o bom desempenho de todo o sistema.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In this paper a Markov chain based analytical model is proposed to evaluate the slotted CSMA/CA algorithm specified in the MAC layer of IEEE 802.15.4 standard. The analytical model consists of two two-dimensional Markov chains, used to model the state transition of an 802.15.4 device, during the periods of a transmission and between two consecutive frame transmissions, respectively. By introducing the two Markov chains a small number of Markov states are required and the scalability of the analytical model is improved. The analytical model is used to investigate the impact of the CSMA/CA parameters, the number of contending devices, and the data frame size on the network performance in terms of throughput and energy efficiency. It is shown by simulations that the proposed analytical model can accurately predict the performance of slotted CSMA/CA algorithm for uplink, downlink and bi-direction traffic, with both acknowledgement and non-acknowledgement modes.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This paper investigates the random channel access mechanism specified in the IEEE 802.16 standard for the uplink traffic in a Point-to-MultiPoint (PMP) network architecture. An analytical model is proposed to study the impacts of the channel access parameters, bandwidth configuration and piggyback policy on the performance. The impacts of physical burst profile and non-saturated network traffic are also taken into account in the model. Simulations validate the proposed analytical model. It is observed that the bandwidth utilization can be improved if the bandwidth for random channel access can be properly configured according to the channel access parameters, piggyback policy and network traffic.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

IEEE 802.16 standards have been developed as one of the technical solutions for broadband wireless access systems. It has high data rate, large network coverage, flexible QoS schemes and cheap network deployment. Various flexible mechanisms related to QoS provisioning have been specified for uplink traffic at the medium access control (MAC) layer in the standards. Among the mechanisms, contention based bandwidth request scheme can be used to indicate bandwidth demands to the base station for the non-real-time polling and besteffort services. These two services are used for most application with unknown traffic characteristics. Due to the diverse QoS requirements of those applications, service differentiation (SD) is anticipated over the contention based bandwidth request scheme. In this paper we investigate the SD with the bandwidth request scheme by means of assigning different channel access parameters and bandwidth allocation priorities. The effectiveness of the differentiation schemes are evaluated by simulations. It is observed that the initial backoff window can be efficient in SD, and if combined with the bandwidth allocation priority, the SD performances will be better. ©2008 IEEE.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

IEEE 802.15.4 standard has been proposed for low power wireless personal area networks. It can be used as an important component in machine to machine (M2M) networks for data collection, monitoring and controlling functions. With an increasing number of machine devices enabled by M2M technology and equipped with 802.15.4 radios, it is likely that multiple 802.15.4 networks may be deployed closely, for example, to collect data for smart metering at residential or enterprise areas. In such scenarios, supporting reliable communications for monitoring and controlling applications is a big challenge. The problem becomes more severe due to the potential hidden terminals when the operations of multiple 802.15.4 networks are uncoordinated. In this paper, we investigate this problem from three typical scenarios and propose an analytic model to reveal how performance of coexisting 802.15.4 networks may be affected by uncoordinated operations under these scenarios. Simulations will be used to validate the analytic model. It is observed that uncoordinated operations may lead to a significant degradation of system performance in M2M applications. With the proposed analytic model, we also investigate the performance limits of the 802.15.4 networks, and the conditions under which coordinated operations may be required to support M2M applications. © 2012 Springer Science + Business Media, LLC.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

IEEE 802.16 network is widely viewed as a strong candidate solution for broadband wireless access systems. Various flexible mechanisms related to QoS provisioning have been specified for uplink traffic at the medium access control (MAC) layer in the standards. Among the mechanisms, bandwidth request scheme can be used to indicate and request bandwidth demands to the base station for different services. Due to the diverse QoS requirements of the applications, service differentiation (SD) is desirable for the bandwidth request scheme. In this paper, we propose several SD approaches. The approaches are based on the contention-based bandwidth request scheme and achieved by the means of assigning different channel access parameters and/or bandwidth allocation priorities to different services. Additionally, we propose effective analytical model to study the impacts of the SD approaches, which can be used for the configuration and optimization of the SD services. It is observed from simulations that the analytical model has high accuracy. Service can be efficiently differentiated with initial backoff window in terms of throughput and channel access delay. Moreover, the service differentiation can be improved if combined with the bandwidth allocation priority approach without adverse impacts on the overall system throughput.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Cellular networks have been widely used to support many new audio-and video-based multimedia applications. The demand for higher data rate and diverse services has driven the research on multihop cellular networks (MCNs). With its ad hoc network features, an MCN can offer many additional advantages, such as increased network throughput, scalability and coverage. However, providing ad hoc capability to MCNs is challenging as it may require proper wireless interfaces. In this article, the architecture of IEEE 802.16 network interface to provide ad hoc capability for MCNs is investigated, with its focus on the IEEE 802.16 mesh networking and scheduling. Several distributed routing algorithms based on network entry mechanism are studied and compared with a centralized routing algorithm. It is observed from the simulation results that 802.16 mesh networks have limitations on providing sufficient bandwidth for the traffic from the cellular base stations when a cellular network size is relatively large. © 2007 IEEE.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

IEEE 802.16 standard specifies a contention based bandwidth request scheme for best-effort and non-real time polling services in Point-to-MultiPoint (PMP) architecture. In this letter we propose an analytical model for the scheme and study how the performances of bandwidth efficiency and channel access delay change with the contention window size, the number of contending subscriber stations, the number of slots allocated for bandwidth request and data transmission. Simulations validate its high accuracy. © 2007 IEEE.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

IEEE 802.15.4 networks has the features of low data rate and low power consumption. It is a strong candidate technique for wireless sensor networks and can find many applications to smart grid. However, due to the low network and energy capacities it is critical to maximize the bandwidth and energy efficiencies of 802.15.4 networks. In this paper we propose an adaptive data transmission scheme with CSMA/CA access control, for applications which may have heavy traffic loads such as smart grids. The adaptive access control is simple to implement. Its compatibility with legacy 802.15.4 devices can be maintained. Simulation results demonstrate the effectiveness of the proposed scheme with largely improved bandwidth and power efficiency. © 2013 International Information Institute.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Due to low cost and easy deployment, multi-hop wireless networks become a very attractive communication paradigm. However, IEEE 802.11 medium access control (MAC) protocol widely used in wireless LANs was not designed for multi-hop wireless networks. Although it can support some kinds of ad hoc network architecture, it does not function efficiently in those wireless networks with multi-hop connectivity. Therefore, our research is focused on studying the medium access control in multi-hop wireless networks. The objective is to design practical MAC layer protocols for supporting multihop wireless networks. Particularly, we try to prolong the network lifetime without degrading performances with small battery-powered devices and improve the system throughput with poor quality channels. ^ In this dissertation, we design two MAC protocols. The first one is aimed at minimizing energy-consumption without deteriorating communication activities, which provides energy efficiency, latency guarantee, adaptability and scalability in one type of multi-hop wireless networks (i.e. wireless sensor network). Methodologically, inspired by the phase transition phenomena in distributed networks, we define the wake-up probability, which maintained by each node. By using this probability, we can control the number of wireless connectivity within a local area. More specifically, we can adaptively adjust the wake-up probability based on the local network conditions to reduce energy consumption without increasing transmission latency. The second one is a cooperative MAC layer protocol for multi-hop wireless networks, which leverages multi-rate capability by cooperative transmission among multiple neighboring nodes. Moreover, for bidirectional traffic, the network throughput can be further increased by using the network coding technique. It is a very helpful complement for current rate-adaptive MAC protocols under the poor channel conditions of direct link. Finally, we give an analytical model to analyze impacts of cooperative node on the system throughput. ^

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In recent years, wireless communication infrastructures have been widely deployed for both personal and business applications. IEEE 802.11 series Wireless Local Area Network (WLAN) standards attract lots of attention due to their low cost and high data rate. Wireless ad hoc networks which use IEEE 802.11 standards are one of hot spots of recent network research. Designing appropriate Media Access Control (MAC) layer protocols is one of the key issues for wireless ad hoc networks. ^ Existing wireless applications typically use omni-directional antennas. When using an omni-directional antenna, the gain of the antenna in all directions is the same. Due to the nature of the Distributed Coordination Function (DCF) mechanism of IEEE 802.11 standards, only one of the one-hop neighbors can send data at one time. Nodes other than the sender and the receiver must be either in idle or listening state, otherwise collisions could occur. The downside of the omni-directionality of antennas is that the spatial reuse ratio is low and the capacity of the network is considerably limited. ^ It is therefore obvious that the directional antenna has been introduced to improve spatial reutilization. As we know, a directional antenna has the following benefits. It can improve transport capacity by decreasing interference of a directional main lobe. It can increase coverage range due to a higher SINR (Signal Interference to Noise Ratio), i.e., with the same power consumption, better connectivity can be achieved. And the usage of power can be reduced, i.e., for the same coverage, a transmitter can reduce its power consumption. ^ To utilizing the advantages of directional antennas, we propose a relay-enabled MAC protocol. Two relay nodes are chosen to forward data when the channel condition of direct link from the sender to the receiver is poor. The two relay nodes can transfer data at the same time and a pipelined data transmission can be achieved by using directional antennas. The throughput can be improved significant when introducing the relay-enabled MAC protocol. ^ Besides the strong points, directional antennas also have some explicit drawbacks, such as the hidden terminal and deafness problems and the requirements of retaining location information for each node. Therefore, an omni-directional antenna should be used in some situations. The combination use of omni-directional and directional antennas leads to the problem of configuring heterogeneous antennas, i e., given a network topology and a traffic pattern, we need to find a tradeoff between using omni-directional and using directional antennas to obtain a better network performance over this configuration. ^ Directly and mathematically establishing the relationship between the network performance and the antenna configurations is extremely difficult, if not intractable. Therefore, in this research, we proposed several clustering-based methods to obtain approximate solutions for heterogeneous antennas configuration problem, which can improve network performance significantly. ^ Our proposed methods consist of two steps. The first step (i.e., clustering links) is to cluster the links into different groups based on the matrix-based system model. After being clustered, the links in the same group have similar neighborhood nodes and will use the same type of antenna. The second step (i.e., labeling links) is to decide the type of antenna for each group. For heterogeneous antennas, some groups of links will use directional antenna and others will adopt omni-directional antenna. Experiments are conducted to compare the proposed methods with existing methods. Experimental results demonstrate that our clustering-based methods can improve the network performance significantly. ^

Relevância:

100.00% 100.00%

Publicador:

Resumo:

VALENTIM, R. A. M. ; MORAIS, A. H. F. ; SOUZA, V. S. V ; ARAUJO JUNIOR, H. B. ; BRANDAO, G. B. ; GUERREIRO, A. M. G. . Rede de Controle em Ambiente Hospitalar: um protocolo multiciclos para automação hospitalar sobre IEEE 802.3 com IGMP Snooping. Revista Ciência e Tecnologia, v. 11, p. 19, 2009

Relevância:

100.00% 100.00%

Publicador:

Resumo:

VALENTIM, R. A. M. ; MORAIS, A. H. F. ; SOUZA, V. S. V ; ARAUJO JUNIOR, H. B. ; BRANDAO, G. B. ; GUERREIRO, A. M. G. . Rede de Controle em Ambiente Hospitalar: um protocolo multiciclos para automação hospitalar sobre IEEE 802.3 com IGMP Snooping. Revista Ciência e Tecnologia, v. 11, p. 19, 2009

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A trend in design and implementation of modern industrial automation systems is to integrate computing, communication and control into a unified framework at different levels of machine/factory operations and information processing. These distributed control systems are referred to as networked control systems (NCSs). They are composed of sensors, actuators, and controllers interconnected over communication networks. As most of communication networks are not designed for NCS applications, the communication requirements of NCSs may be not satisfied. For example, traditional control systems require the data to be accurate, timely and lossless. However, because of random transmission delays and packet losses, the control performance of a control system may be badly deteriorated, and the control system rendered unstable. The main challenge of NCS design is to both maintain and improve stable control performance of an NCS. To achieve this, communication and control methodologies have to be designed. In recent decades, Ethernet and 802.11 networks have been introduced in control networks and have even replaced traditional fieldbus productions in some real-time control applications, because of their high bandwidth and good interoperability. As Ethernet and 802.11 networks are not designed for distributed control applications, two aspects of NCS research need to be addressed to make these communication networks suitable for control systems in industrial environments. From the perspective of networking, communication protocols need to be designed to satisfy communication requirements for NCSs such as real-time communication and high-precision clock consistency requirements. From the perspective of control, methods to compensate for network-induced delays and packet losses are important for NCS design. To make Ethernet-based and 802.11 networks suitable for distributed control applications, this thesis develops a high-precision relative clock synchronisation protocol and an analytical model for analysing the real-time performance of 802.11 networks, and designs a new predictive compensation method. Firstly, a hybrid NCS simulation environment based on the NS-2 simulator is designed and implemented. Secondly, a high-precision relative clock synchronization protocol is designed and implemented. Thirdly, transmission delays in 802.11 networks for soft-real-time control applications are modeled by use of a Markov chain model in which real-time Quality-of- Service parameters are analysed under a periodic traffic pattern. By using a Markov chain model, we can accurately model the tradeoff between real-time performance and throughput performance. Furthermore, a cross-layer optimisation scheme, featuring application-layer flow rate adaptation, is designed to achieve the tradeoff between certain real-time and throughput performance characteristics in a typical NCS scenario with wireless local area network. Fourthly, as a co-design approach for both a network and a controller, a new predictive compensation method for variable delay and packet loss in NCSs is designed, where simultaneous end-to-end delays and packet losses during packet transmissions from sensors to actuators is tackled. The effectiveness of the proposed predictive compensation approach is demonstrated using our hybrid NCS simulation environment.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Real-time networked control systems (NCSs) over data networks are being increasingly implemented on a massive scale in industrial applications. Along with this trend, wireless network technologies have been promoted for modern wireless NCSs (WNCSs). However, popular wireless network standards such as IEEE 802.11/15/16 are not designed for real-time communications. Key issues in real-time applications include limited transmission reliability and poor transmission delay performance. Considering the unique features of real-time control systems, this paper develops a conditional retransmission enabled transport protocol (CRETP) to improve the delay performance of the transmission control protocol (TCP) and also the reliability performance of the user datagram protocol (UDP) and its variants. Key features of the CRETP include a connectionless mechanism with acknowledgement (ACK), conditional retransmission and detection of ineffective data packets on the receiver side.