941 resultados para Hypoxic ischaemic encephaolpathy
Resumo:
Drug-induced respiratory depression is a common side effect of the agents used in anesthesia practice to provide analgesia and sedation. Depression of the ventilatory drive in the spontaneously breathing patient can lead to severe cardiorespiratory events and it is considered a primary cause of morbidity. Reliable predictions of respiratory inhibition in the clinical setting would therefore provide a valuable means to improve the safety of drug delivery. Although multiple studies investigated the regulation of breathing in man both in the presence and absence of ventilatory depressant drugs, a unified description of respiratory pharmacodynamics is not available. This study proposes a mathematical model of human metabolism and cardiorespiratory regulation integrating several isolated physiological and pharmacological aspects of acute drug-induced ventilatory depression into a single theoretical framework. The description of respiratory regulation has a parsimonious yet comprehensive structure with substantial predictive capability. Simulations relative to the synergistic interaction of the hypercarbic and hypoxic respiratory drive and the global effect of drugs on the control of breathing are in good agreement with published experimental data. Besides providing clinically relevant predictions of respiratory depression, the model can also serve as a test bed to investigate issues of drug tolerability and dose finding/control under non-steady-state conditions.
Resumo:
AIMS: To determine the effect of anti-ischaemic drug therapy on long-term outcomes of asymptomatic patients without coronary artery disease (CAD) history but silent exercise ST-depression. METHODS AND RESULTS: In a randomized multicentre trial, 263 of 522 asymptomatic subjects without CAD but at least one CAD risk factor in whom silent ischaemia by exercise ECG was confirmed by stress imaging were asked to participate. The 54 (21%) consenting patients were randomized to anti-anginal drug therapy in addition to risk factor control (MED, n = 26) or risk factor control-only (RFC, n = 28). They were followed yearly for 11.2 +/- 2.2 years. During 483 patient-years, cardiac death, non-fatal myocardial infarction, or acute coronary syndrome requiring hospitalization or revascularization occurred in 3 (12%) of MED vs. 17 (61%) of RFC patients (P < 0.001). In addition, MED patients had consistently lower rates of exercise-induced ischaemia during follow-up, and left ventricular ejection fraction remained unchanged (-0.7%, P = 0.597) in contrast to RFC patients in whom it decreased over time (-6.0%, P = 0.006). CONCLUSION: Anti-ischaemic drug therapy and aspirin seem to reduce cardiac events in subjects with asymptomatic ischaemia type I. In such patients, exercise-induced ST-segment depression should be verified by stress imaging; if silent ischaemia is documented, anti-ischaemic drug therapy and aspirin should be considered.
Resumo:
BACKGROUND: Dysfunction of the nitric oxide pathway is implicated in peripheral arterial disease. Nitric oxide synthase (NOS) isoforms and NOS activity were studied in muscle from patients with critical leg ischaemia (CLI). Alterations in NOS during revascularization surgery were also assessed. METHODS: Muscle biopsies were taken from patients with CLI undergoing amputation and also from patients undergoing femorodistal bypass at the start of surgery, after arterial clamping and following reperfusion. The presence of NOS within muscle sections was confirmed using reduced nicotinamide adenine dinucleotide phosphate diaphorase histochemistry. NOS isoform distribution was studied by immunohistochemistry. NOS mRNA and protein levels were measured using real-time reverse transcriptase-polymerase chain reaction and western blotting. NOS activity was assessed with the citrulline assay. RESULTS: All three NOS isoforms were found in muscle, associated with muscle fibres and microvessels. NOS I and III protein expression was increased in CLI (P = 0.041). During revascularization, further ischaemia and reperfusion led to a rise in NOS III protein levels (P = 0.008). NOS activity was unchanged. CONCLUSION: Alterations in NOS I and III occurred in muscle from patients with CLI and further changes occurred during bypass surgery.
Resumo:
For cell-based cartilage repair strategies, an ex vivo expansion phase is required to obtain sufficient numbers of cells needed for therapy. Although recent reports demonstrated the central role of oxygen for the function and differentiation of chondrocytes, a beneficial effect of low oxygen concentrations during the expansion of the cells to further improve their chondrogenic capacity has not been investigated.Therefore, freshly harvested bovine articular chondrocytes were grown in two-dimensional monolayer cultures at 1.5% and 21% O2 and redifferentiation was subsequently induced in three-dimensional micromass cultures at 1.5%, 5%, and 21% O2. Cells expanded at 1.5% O2 were characterized by low citrate synthase (aerobic energy metabolism)--and high LDH (anaerobic energy metabolism-activities,suggesting an anaerobic energy metabolism. Collagen type II mRNA was twofold higher in cells expanded at 1.5% as compared to expansion at 21% O2. Micromass cultures grown at 21% O2 showed up to a twofold increase in the tissue content of glycosaminoglycans when formed with cells expanded at 1.5% instead of 21% O2. However, no differences in the levels of transcripts and in the staining for collagen type II protein were observed in these micromass cultures. Hypoxia (1.5% and 5% O2) applied during micromass cultures gave rise to tissues with low contents of glycosaminoglycans only. In vivo, the chondrocytes are adapted to a hypoxic environment. Taking this into account, by applying 1.5% O2 in the expansion phase in the course of cell-based cartilage repair strategies, may result in a repair tissue with higher quality by increasing the content of glycosaminoglycans.
Resumo:
Molecular responses to hypoxia restore oxygen homeostasis and promote cell survival, and are mainly regulated through the activation of the hypoxia-inducible transcription factor (HIF)-1 and its target genes. In this study we questioned whether surgically depleting the liver s arterial blood supply, by clamping the hepatic artery (HA), would be sufficient to mount a hypoxia-driven molecular response, the up-regulation of hepatoprotective genes and thereby protect the liver from subsequent damaging insults.;;The HA of normal male Balb/c mice was clamped with a micro vascular clip for 2 hours. The liver s saturated oxygen concentration (SO2) was measured using an O2C surface probe (LEA-Medizintechnik) and interstitial fluid was collected with microdialysis membranes to monitor tissue damage. Mice without clamping served as sham operated controls. Interstitial fluid was assessed for lactate pyruvate (L/P) and glycerol content and the mRNA of hepatoprotective genes was analyzed by real time PCR. Subsequently, mice received either a tail vein injection of anti-Fas antibody (Jo2, 0.2 mg/kg) or the liver was made ischemic (60min) followed by 6 hours reperfusion. Caspase 3-activity and cleaved lamin A were used to assess apoptosis. In separate groups, animal were monitored for survival.;;After 30min of clamping the HA the SO2 of the liver decreased and remained at a reduced level for up to 2 hours, without an increase in L/P ratio or glycerol release. We demonstrate the activation of a hypoxia-inducible signaling pathway by the stabilization of HIF-1 protein (Western blot) and by an increase of its target gene, Epo, mRNA. There was an up-regulation of the hepatoprotective genes IL-6, IGFBP-1, HO-1 and A20 mRNA. When subsequently injected with Jo2, animals preconditioned with HA clamping, had a significantly decreased caspase-3 activity (avg21044 vs. avg3637; p=0.001, T-test) and there were fewer positive cells for cleaved Lamin A. The survival probability (10.5 hours, n=12) of mice with HA clamping was significantly higher (3.2 hours, n=13; p=0.014, Logrank test). Likewise, survival after 60 minutes of partial hepatic ischemia and 6 hours of reperfusion was reduced from 86% in mice with pretreatment by HA clamping to 56% in sham treated controls.;;This study demonstrates that a localized hypoxic stress can be achieved by surgically removing the livers arterial blood supply. Furthermore it can stimulate a hepatoprotective response that protects the liver against Fas-mediated apoptosis and ischemia-reperfusion injury. Our findings offer an innovative approach to induce hepatoprotective genes to defend the liver against subsequent insults.
Resumo:
CONTEXT: The success of pancreatic islet transplantation depends largely on the capacity of the islet graft to survive the initial phase immediately after transplantation until revascularization is completed. Endothelin-1 (ET-1) is a strong vasoconstrictor which has been involved in solid organ graft failure but is also known to be a potent mitogenic/anti-apoptotic factor which could also potentially enhance the survival of the transplanted islets. OBJECTIVE: Characterization of the endothelin system with regard to a potential endothelin agonist/antagonist treatment. DESIGN: Regulated expression of the endothelin system in human and rat pancreatic islets and beta-cell lines was assessed by means of immunohistochemistry, competition binding studies, western blot, RT-PCR, real-time PCR and transplant studies. RESULTS: ET-1, ETA- and ETB-receptor immunoreactivity was identified in the endocrine cells of human and rat pancreatic islets. The corresponding mRNA was detectable in rat beta-cell lines and isolated rat and human pancreatic islets. Competition binding studies on rat islets revealed binding sites for both receptor types. ET-1 stimulated the phosphorylation of mitogen-activated protein kinase, which was prevented by ETA- and ETB-receptor antagonists. After exposure to hypoxia equal to post-transplant environment oxygen tension, mRNA levels of ET-1 and ETB-receptor of human islets were robustly induced whereas ETA-receptor mRNA did not show significant changes. Immunostaining signals for ET-1 and ETA-receptor of transplanted rat islets were markedly decreased when compared to native pancreatic sections. CONCLUSIONS: In pancreatic islets, ET-1 and its receptors are differentially expressed by hypoxia and after transplantation. Our results provide the biological basis for the study of the potential use of endothelin agonists/antagonists to improve islet transplantation outcome.
Resumo:
A 44-year-old male European with type I diabetes mellitus fell into diabetic ketoacidosis. In the emergency room, he developed an episode of asystole and respiratory failure requiring one cycle of cardiopulmonary resuscitation and extracorporeal membrane oxygenation (ECMO). Waking up 7 days later, he presented a bilateral complete loss of vision. Ophthalmological examination including funduscopy on days 1 and 10, after extubation, showed bilateral large round pupils non-reactive to light and a normal fundus. Neuroimaging studies, including MRI and MRA of the brain, were all within normal limits. A lumbar puncture and comprehensive serological testing excluded an infectious or rheumatic cause. An empirical high-dose intravenous steroid treatment administered for 5 days had no effect on his vision. His eye examination at 1.5 months follow-up showed a normal fundus except for progressive bilateral optic nerve disc pallor, which pointed towards the diagnosis of a posterior ischaemic optic neuropathy.
Resumo:
The goal of acute stroke treatment with intravenous thrombolysis or endovascular recanalization techniques is to rescue the penumbral tissue. Therefore, knowing the factors that influence the loss of penumbral tissue is of major interest. In this study we aimed to identify factors that determine the evolution of the penumbra in patients with proximal (M1 or M2) middle cerebral artery occlusion. Among these factors collaterals as seen on angiography were of special interest. Forty-four patients were included in this analysis. They had all received endovascular therapy and at least minimal reperfusion was achieved. Their penumbra was assessed with perfusion- and diffusion-weighted imaging. Perfusion-weighted imaging volumes were defined by circular singular value decomposition deconvolution maps (Tmax > 6 s) and results were compared with volumes obtained with non-deconvolved maps (time to peak > 4 s). Loss of penumbral volume was defined as difference of post- minus pretreatment diffusion-weighted imaging volumes and calculated in per cent of pretreatment penumbral volume. Correlations between baseline characteristics, reperfusion, collaterals, time to reperfusion and penumbral volume loss were assessed using analysis of covariance. Collaterals (P = 0.021), reperfusion (P = 0.003) and their interaction (P = 0.031) independently influenced penumbral tissue loss, but not time from magnetic resonance (P = 0.254) or from symptom onset (P = 0.360) to reperfusion. Good collaterals markedly slowed down and reduced the penumbra loss: in patients with thrombolysis in cerebral infarction 2 b-3 reperfusion and without any haemorrhage, 27% of the penumbra was lost with 8.9 ml/h with grade 0 collaterals, whereas 11% with 3.4 ml/h were lost with grade 1 collaterals. With grade 2 collaterals the penumbral volume change was -2% with -1.5 ml/h, indicating an overall diffusion-weighted imaging lesion reversal. We conclude that collaterals and reperfusion are the main factors determining loss of penumbral tissue in patients with middle cerebral artery occlusions. Collaterals markedly reduce and slow down penumbra loss. In patients with good collaterals, time to successful reperfusion accounts only for a minor fraction of penumbra loss. These results support the hypothesis that good collaterals extend the time window for acute stroke treatment.
Resumo:
Aims: To compare clinical outcomes after percutaneous coronary intervention (PCI) between patients with acute coronary syndromes (ACS) and those with stable ischaemic heart disease (SIHD) stratified by anatomic disease complexity (SYNTAX score). Methods and results: Patient-level data from three all-comers PCI trials were pooled. Patients (n=4,204) were stratified by clinical presentation (i.e., ACS or SIHD) and by SYNTAX score (i.e., lowest vs. two highest tertiles). The major adverse cardiac event (MACE) rates of patients with low-risk SIHD (n=531) and high-risk SIHD (n=1,066) were compared with ACS patients (n=2,607), respectively. At two years, the risk of MACE was higher for high-risk SIHD patients (OR 1.34, 95% CI: 1.08-1.66) and lower for low-risk SIHD patients (OR 0.61, 95% CI: 0.43-0.87) compared with ACS patients, respectively. This difference between high-risk SIHD patients and ACS patients was primarily driven by a higher risk of myocardial infarction (OR 1.64, 95% CI: 1.21-2.21), while there was no difference for cardiac death (OR 0.77, 95% CI: 0.49-1.21) or target lesion revascularisation (OR 1.21, 95% CI: 0.91-1.62). Conclusions: In this pooled analysis, the majority of patients undergoing PCI for SIHD (i.e., with SYNTAX score >8) had a higher risk of MACE than patients with ACS. Trial registration: URL: http://www.ClinicalTrials.gov; unique identifier: NCT00297661 (Sirtax), NCT00389220 (Leaders), NCT00114972 (Resolute-AC).
Resumo:
We assessed the effects of hypoxic-ischemic encephalopathy (HIE) and whole-body hypothermia therapy on auditory brain stem evoked responses (ABRs) and distortion product otoacoustic emissions (DPOAEs). We performed serial assessments of ABRs and DPOAEs in newborns with moderate or severe HIE, randomized to hypothermia ( N = 4) or usual care ( N = 5). Participants were five boys and four girls with mean gestational age (standard deviation) of 38.9 (1.8) weeks. During the first week of life, peripheral auditory function, as measured by the DPOAEs, was disrupted in all nine subjects. ABRs were delayed but central transmission was intact, suggesting a peripheral rather than a central neural insult. By 3 weeks of age, peripheral auditory function normalized. Hypothermia temporarily prolonged the ABR, more so for waves generated higher in the brain stem but the effects reversed quickly on rewarming. Neonatal audiometric testing is feasible, noninvasive, and capable of enhancing our understanding of the effects of HIE and hypothermia on auditory function.
Resumo:
BACKGROUND: Whole-body hypothermia reduced the frequency of death or moderate/severe disabilities in neonates with hypoxic-ischemic encephalopathy in a randomized, controlled multicenter trial. OBJECTIVE: Our goal was to evaluate outcomes of safety and effectiveness of hypothermia in infants up to 18 to 22 months of age. DESIGN/METHODS: A priori outcomes were evaluated between hypothermia (n = 102) and control (n = 106) groups. RESULTS: Encephalopathy attributable to causes other than hypoxia-ischemia at birth was not noted. Inotropic support (hypothermia, 59% of infants; control, 56% of infants) was similar during the 72-hour study intervention period in both groups. Need for blood transfusions (hypothermia, 24%; control, 24%), platelet transfusions (hypothermia, 20%; control, 12%), and volume expanders (hypothermia, 54%; control, 49%) was similar in the 2 groups. Among infants with persistent pulmonary hypertension (hypothermia, 25%; control, 22%), nitric-oxide use (hypothermia, 68%; control, 57%) and placement on extracorporeal membrane oxygenation (hypothermia, 4%; control, 9%) was similar between the 2 groups. Non-central nervous system organ dysfunctions occurred with similar frequency in the hypothermia (74%) and control (73%) groups. Rehospitalization occurred among 27% of the infants in the hypothermia group and 42% of infants in the control group. At 18 months, the hypothermia group had 24 deaths, 19 severe disabilities, and 2 moderate disabilities, whereas the control group had 38 deaths, 25 severe disabilities, and 1 moderate disability. Growth parameters were similar between survivors. No adverse outcomes were noted among infants receiving hypothermia with transient reduction of temperature below a target of 33.5 degrees C at initiation of cooling. There was a trend in reduction of frequency of all outcomes in the hypothermia group compared with the control group in both moderate and severe encephalopathy categories. CONCLUSIONS: Although not powered to test these secondary outcomes, whole-body hypothermia in infants with encephalopathy was safe and was associated with a consistent trend for decreasing frequency of each of the components of disability.
Resumo:
OBJECTIVE: To relate volumetric magnetic resonance imaging (MRI) findings to hypothermia therapy and neurosensory impairments. STUDY DESIGN: Newborns > or =36 weeks' gestation with hypoxic-ischemic encephalopathy who participated in the National Institute of Child Health and Human Development hypothermia randomized trial at our center were eligible. We determined the relationship between hypothermia treatment and usual care (control) to absolute and relative cerebral tissue volumes. Furthermore, we correlated brain volumes with death or neurosensory impairments at 18 to 22 months. RESULT: Both treatment groups were comparable before randomization. Total brain tissue volumes did not differ in relation to treatment assignment. However, relative volumes of subcortical white matter were significantly larger in hypothermia-treated than control infants. Furthermore, relative total brain volumes correlated significantly with death or neurosensory impairments. Relative volumes of the cortical gray and subcortical white matter also correlated significantly with Bayley Scales psychomotor development index. CONCLUSION: Selected volumetric MRI findings correlated with hypothermia therapy and neurosensory impairments. Larger studies using MRI brain volumes as a secondary outcome measure are needed.
Resumo:
Perinatal brain damage is associated not only with hypoxic-ischemic insults but also with intrauterine inflammation. A combination of antenatal inflammation and asphyxia increases the risk of cerebral palsy >70 times. The aim of the present study was to determine the effect of intracisternal (i.c.) administration of endotoxin [lipopolysaccharides (LPS)] on subsequent hypoxic-ischemic brain damage in neonatal rats. Seven-day-old Wistar rats were subjected to i.c. application of NaCl or LPS (5 microg/pup). One hour later, the left common carotid artery was exposed through a midline neck incision and ligated with 6-0 surgical silk. After another hour of recovery, the pups were subjected to a hypoxic gas mixture (8% oxygen/92% nitrogen) for 60 min. The animals were randomized to four experimental groups: 1) sham control group, left common carotid artery exposed but not ligated (n = 5); 2) LPS group, subjected to i.c. application of LPS (n = 7); 3) hypoxic-ischemic study group, i.c. injection of NaCl and exposure to hypoxia after ligation of the left carotid artery (n = 17); or 4) hypoxic-ischemic/LPS study group, i.c. injection of LPS and exposure to hypoxia after ligation of the left carotid artery (n = 19). Seven days later, neonatal brains were assessed for neuronal cell damage. In a second set of experiments, rat pups received an i.c. injection of LPS (5 microg/pup) and were evaluated for tumor necrosis factor-alpha expression by immunohistochemistry. Neuronal cell damage could not be observed in the sham control or in the LPS group. In the hypoxic-ischemic/LPS group, neuronal injury in the cerebral cortex was significantly higher than in animals that were subjected to hypoxia/ischemia after i.c. application of NaCl. Injecting LPS intracisternally caused a marked expression of tumor necrosis factor-alpha in the leptomeninges. Applying LPS intracisternally sensitizes the immature rat brain to a subsequent hypoxic-ischemic insult.