895 resultados para Hyperspectral imagery
Resumo:
Despite the success of studies attempting to integrate remotely sensed data and flood modelling and the need to provide near-real time data routinely on a global scale as well as setting up online data archives, there is to date a lack of spatially and temporally distributed hydraulic parameters to support ongoing efforts in modelling. Therefore, the objective of this project is to provide a global evaluation and benchmark data set of floodplain water stages with uncertainties and assimilation in a large scale flood model using space-borne radar imagery. An algorithm is developed for automated retrieval of water stages with uncertainties from a sequence of radar imagery and data are assimilated in a flood model using the Tewkesbury 2007 flood event as a feasibility study. The retrieval method that we employ is based on possibility theory which is an extension of fuzzy sets and that encompasses probability theory. In our case we first attempt to identify main sources of uncertainty in the retrieval of water stages from radar imagery for which we define physically meaningful ranges of parameter values. Possibilities of values are then computed for each parameter using a triangular ‘membership’ function. This procedure allows the computation of possible values of water stages at maximum flood extents along a river at many different locations. At a later stage in the project these data are then used in assimilation, calibration or validation of a flood model. The application is subsequently extended to a global scale using wide swath radar imagery and a simple global flood forecasting model thereby providing improved river discharge estimates to update the latter.
Resumo:
Remote sensing from space-borne platforms is often seen as an appealing method of monitoring components of the hydrological cycle, including river discharge, due to its spatial coverage. However, data from these platforms is often less than ideal because the geophysical properties of interest are rarely measured directly and the measurements that are taken can be subject to significant errors. This study assimilated water levels derived from a TerraSAR-X synthetic aperture radar image and digital aerial photography with simulations from a two dimensional hydraulic model to estimate discharge, inundation extent, depths and velocities at the confluence of the rivers Severn and Avon, UK. An ensemble Kalman filter was used to assimilate spot heights water levels derived by intersecting shorelines from the imagery with a digital elevation model. Discharge was estimated from the ensemble of simulations using state augmentation and then compared with gauge data. Assimilating the real data reduced the error between analyzed mean water levels and levels from three gauging stations to less than 0.3 m, which is less than typically found in post event water marks data from the field at these scales. Measurement bias was evident, but the method still provided a means of improving estimates of discharge for high flows where gauge data are unavailable or of poor quality. Posterior estimates of discharge had standard deviations between 63.3 m3s-1 and 52.7 m3s-1, which were below 15% of the gauged flows along the reach. Therefore, assuming a roughness uncertainty of 0.03-0.05 and no model structural errors discharge could be estimated by the EnKF with accuracy similar to that arguably expected from gauging stations during flood events. Quality control prior to assimilation, where measurements were rejected for being in areas of high topographic slope or close to tall vegetation and trees, was found to be essential. The study demonstrates the potential, but also the significant limitations of currently available imagery to reduce discharge uncertainty in un-gauged or poorly gauged basins when combined with model simulations in a data assimilation framework.
Resumo:
A new wave of computerised therapy is under development which, rather than simulating talking therapies, uses bias modification techniques to target the core psychological process underlying anxiety. Such interventions are aimed at anxiety disorders, and are yet to be adapted for co-morbid anxiety in psychosis. The cognitive bias modification (CBM) paradigm delivers repeated exposure to stimuli in order to train individuals to resolve ambiguous information in a positive, rather than anxiety provoking, manner. The current study is the first to report data from a modified form of CBM which targets co-morbid anxiety within individuals diagnosed with schizophrenia. Our version of CBM involved exposure to one hundred vignettes presented over headphones. Participants were instructed to actively simulate the described scenarios via visual imagery. Twenty-one participants completed both a single session of CBM and a single control condition session in counter-balanced order. Within the whole sample, there was no significant improvement on interpretation bias of CBM or state anxiety, relative to the control condition. However, in line with previous research, those participants who engage in higher levels of visual imagery exhibited larger changes in interpretation bias. We discuss the implications for harnessing computerised CBM therapy developments for co-morbid anxiety in schizophrenia.
Resumo:
Threatening intrusive images are central to posttraumatic stress disorder. It has been suggested that intrusive imagery in the context of a sense of threat leads to the development and persistence of posttraumatic stress symptoms. This study investigates London school children's (N = 76; age 10-11 years) self-reported posttraumatic stress symptoms in response to viewing the attacks of September 11, 2001 on television. Assessments were made at two time points. A minority of participants reported moderate-severe symptoms with functional impairment at 2 months (14.5%) and 6 months (9.2%) after viewing the September 11events. After controlling for symptom stability, persistent symptoms were associated with peri-traumatic factors, notably perceiving that one's life was in danger. The combined effect of intrusive imagery and peri-traumatic life threat was associated with symptom persistence. Assessments of intrusive image content via checklist and free-report indicated that the images were directly related to September 11 and were fairly stable over time. Implications for treating children's intrusive images following stressful events are explored. (C) 2007 Elsevier Ltd. All rights reserved.
Resumo:
The visuospatial perceptual abilities of individuals with Williams syndrome (WS) were investigated in two experiments. Experiment I measured the ability of participants to discriminate between oblique and between nonoblique orientations. Individuals with WS showed a smaller effect of obliqueness in response time, when compared to controls matched for nonverbal mental age. Experiment 2 investigated the possibility that this deviant pattern of orientation discrimination accounts for the poor ability to perform mental rotation in WS (Farran, Jarrold, & Gathercole, 2001). A size transformation task was employed, which shares the image transformation requirements of mental rotation, but not the orientation discrimination demands. Individuals with WS performed at the same level as controls. The results suggest a deviance at the perceptual level in WS, in processing orientation, which fractionates from the ability to mentally transform images.
Resumo:
Many depressed patients report intrusive and distressing memories of specific events in their lives. Where present, these memories are believed to act as a maintaining factor. A series of ten patients with major depressive disorder and intrusive memories, many of them reporting severe, chronic, or recurrent episodes of depression, were given an average of 8.1 sessions of imagery rescripting as a stand-alone treatment. Hierarchical linear modelling demonstrated large treatment effects that were well maintained at one year follow-up. Seven patients showed reliable improvement, and six patients clinically significant improvement. These gains were achieved entirely by working through patients' visual imagination and without verbal challenging of negative beliefs. Spontaneous changes in beliefs, rumination, and behaviour were nevertheless observed. (C) 2009 Elsevier Ltd. All rights reserved.
Resumo:
In this work the G(A)(0) distribution is assumed as the universal model for amplitude Synthetic Aperture (SAR) imagery data under the Multiplicative Model. The observed data, therefore, is assumed to obey a G(A)(0) (alpha; gamma, n) law, where the parameter n is related to the speckle noise, and (alpha, gamma) are related to the ground truth, giving information about the background. Therefore, maps generated by the estimation of (alpha, gamma) in each coordinate can be used as the input for classification methods. Maximum likelihood estimators are derived and used to form estimated parameter maps. This estimation can be hampered by the presence of corner reflectors, man-made objects used to calibrate SAR images that produce large return values. In order to alleviate this contamination, robust (M) estimators are also derived for the universal model. Gaussian Maximum Likelihood classification is used to obtain maps using hard-to-deal-with simulated data, and the superiority of robust estimation is quantitatively assessed.
Resumo:
Gaussian multi-scale representation is a mathematical framework that allows to analyse images at different scales in a consistent manner, and to handle derivatives in a way deeply connected to scale. This paper uses Gaussian multi-scale representation to investigate several aspects of the derivation of atmospheric motion vectors (AMVs) from water vapour imagery. The contribution of different spatial frequencies to the tracking is studied, for a range of tracer sizes, and a number of tracer selection methods are presented and compared, using WV 6.2 images from the geostationary satellite MSG-2.
Resumo:
We assessed the potential for using optical functional types as effective markers to monitor changes in vegetation in floodplain meadows associated with changes in their local environment. Floodplain meadows are challenging ecosystems for monitoring and conservation because of their highly biodiverse nature. Our aim was to understand and explain spectral differences among key members of floodplain meadows and also characterize differences with respect to functional traits. The study was conducted on a typical floodplain meadow in UK (MG4-type, mesotrophic grassland type 4, according to British National Vegetation Classification). We compared two approaches to characterize floodplain communities using field spectroscopy. The first approach was sub-community based, in which we collected spectral signatures for species groupings indicating two distinct eco-hydrological conditions (dry and wet soil indicator species). The other approach was “species-specific”, in which we focused on the spectral reflectance of three key species found on the meadow. One herb species is a typical member of the MG4 floodplain meadow community, while the other two species, sedge and rush, represent wetland vegetation. We also monitored vegetation biophysical and functional properties as well as soil nutrients and ground water levels. We found that the vegetation classes representing meadow sub-communities could not be spectrally distinguished from each other, whereas the individual herb species was found to have a distinctly different spectral signature from the sedge and rush species. The spectral differences between these three species could be explained by their observed differences in plant biophysical parameters, as corroborated through radiative transfer model simulations. These parameters, such as leaf area index, leaf dry matter content, leaf water content, and specific leaf area, along with other functional parameters, such as maximum carboxylation capacity and leaf nitrogen content, also helped explain the species’ differences in functional dynamics. Groundwater level and soil nitrogen availability, which are important factors governing plant nutrient status, were also found to be significantly different for the herb/wetland species’ locations. The study concludes that spectrally distinguishable species, typical for a highly biodiverse site such as a floodplain meadow, could potentially be used as target species to monitor vegetation dynamics under changing environmental conditions.