1000 resultados para Hydraulic networks


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Integrated manufacturing constitutes a complex system made of heterogeneous information and control subsystems. Those subsystems are not designed to the cooperation. Typically each subsystem automates specific processes, and establishes closed application domains, therefore it is very difficult to integrate it with other subsystems in order to respond to the needed process dynamics. Furthermore, to cope with ever growing marketcompetition and demands, it is necessary for manufacturing/enterprise systems to increase their responsiveness based on up-to-date knowledge and in-time data gathered from the diverse information and control systems. These have created new challenges for manufacturing sector, and even bigger challenges for collaborative manufacturing. The growing complexity of the information and communication technologies when coping with innovative business services based on collaborative contributions from multiple stakeholders, requires novel and multidisciplinary approaches. Service orientation is a strategic approach to deal with such complexity, and various stakeholders' information systems. Services or more precisely the autonomous computational agents implementing the services, provide an architectural pattern able to cope with the needs of integrated and distributed collaborative solutions. This paper proposes a service-oriented framework, aiming to support a virtual organizations breeding environment that is the basis for establishing short or long term goal-oriented virtual organizations. The notion of integrated business services, where customers receive some value developed through the contribution from a network of companies is a key element.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This paper proposes artificial neural networks in combination with wavelet transform for short-term wind power forecasting in Portugal. The increased integration of wind power into the electric grid, as nowadays occurs in Portugal, poses new challenges due to its intermittency and volatility. Hence, good forecasting tools play a key role in tackling these challenges. Results from a real-world case study are presented. A comparison is carried out, taking into account the results obtained with other approaches. Finally, conclusions are duly drawn. (C) 2010 Elsevier Ltd. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this paper we present a Constraint Logic Programming (CLP) based model, and hybrid solving method for the Scheduling of Maintenance Activities in the Power Transmission Network. The model distinguishes from others not only because of its completeness but also by the way it models and solves the Electric Constraints. Specifically we present a efficient filtering algorithm for the Electrical Constraints. Furthermore, the solving method improves the pure CLP methods efficiency by integrating a type of Local Search technique with CLP. To test the approach we compare the method results with another method using a 24 bus network, which considerers 42 tasks and 24 maintenance periods.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This work describes a methodology to extract symbolic rules from trained neural networks. In our approach, patterns on the network are codified using formulas on a Lukasiewicz logic. For this we take advantage of the fact that every connective in this multi-valued logic can be evaluated by a neuron in an artificial network having, by activation function the identity truncated to zero and one. This fact simplifies symbolic rule extraction and allows the easy injection of formulas into a network architecture. We trained this type of neural network using a back-propagation algorithm based on Levenderg-Marquardt algorithm, where in each learning iteration, we restricted the knowledge dissemination in the network structure. This makes the descriptive power of produced neural networks similar to the descriptive power of Lukasiewicz logic language, minimizing the information loss on the translation between connectionist and symbolic structures. To avoid redundance on the generated network, the method simplifies them in a pruning phase, using the "Optimal Brain Surgeon" algorithm. We tested this method on the task of finding the formula used on the generation of a given truth table. For real data tests, we selected the Mushrooms data set, available on the UCI Machine Learning Repository.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This paper addresses the problem of energy resource scheduling. An aggregator will manage all distributed resources connected to its distribution network, including distributed generation based on renewable energy resources, demand response, storage systems, and electrical gridable vehicles. The use of gridable vehicles will have a significant impact on power systems management, especially in distribution networks. Therefore, the inclusion of vehicles in the optimal scheduling problem will be very important in future network management. The proposed particle swarm optimization approach is compared with a reference methodology based on mixed integer non-linear programming, implemented in GAMS, to evaluate the effectiveness of the proposed methodology. The paper includes a case study that consider a 32 bus distribution network with 66 distributed generators, 32 loads and 50 electric vehicles.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Collaborative Work plays an important role in today’s organizations, especially in areas where decisions must be made. However, any decision that involves a collective or group of decision makers is, by itself complex, but is becoming recurrent in recent years. In this work we present the VirtualECare project, an intelligent multi-agent system able to monitor, interact and serve its customers, which are, normally, in need of care services. In last year’s there has been a substantially increase on the number of people needed of intensive care, especially among the elderly, a phenomenon that is related to population ageing. However, this is becoming not exclusive of the elderly, as diseases like obesity, diabetes and blood pressure have been increasing among young adults. This is a new reality that needs to be dealt by the health sector, particularly by the public one. Given this scenarios, the importance of finding new and cost effective ways for health care delivery are of particular importance, especially when we believe they should not to be removed from their natural “habitat”. Following this line of thinking, the VirtualECare project will be presented, like similar ones that preceded it. Recently we have also assisted to a growing interest in combining the advances in information society - computing, telecommunications and presentation – in order to create Group Decision Support Systems (GDSS). Indeed, the new economy, along with increased competition in today’s complex business environments, takes the companies to seek complementarities in order to increase competitiveness and reduce risks. Under these scenarios, planning takes a major role in a company life. However, effective planning depends on the generation and analysis of ideas (innovative or not) and, as a result, the idea generation and management processes are crucial. Our objective is to apply the above presented GDSS to a new area. We believe that the use of GDSS in the healthcare arena will allow professionals to achieve better results in the analysis of one’s Electronically Clinical Profile (ECP). This achievement is vital, regarding the explosion of knowledge and skills, together with the need to use limited resources and get better results.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In general, modern networks are analysed by taking several Key Performance Indicators (KPIs) into account, their proper balance being required in order to guarantee a desired Quality of Service (QoS), particularly, cellular wireless heterogeneous networks. A model to integrate a set of KPIs into a single one is presented, by using a Cost Function that includes these KPIs, providing for each network node a single evaluation parameter as output, and reflecting network conditions and common radio resource management strategies performance. The proposed model enables the implementation of different network management policies, by manipulating KPIs according to users' or operators' perspectives, allowing for a better QoS. Results show that different policies can in fact be established, with a different impact on the network, e.g., with median values ranging by a factor higher than two.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Processes are a central entity in enterprise collaboration. Collaborative processes need to be executed and coordinated in a distributed Computational platform where computers are connected through heterogeneous networks and systems. Life cycle management of such collaborative processes requires a framework able to handle their diversity based on different computational and communication requirements. This paper proposes a rational for such framework, points out key requirements and proposes it strategy for a supporting technological infrastructure. Beyond the portability of collaborative process definitions among different technological bindings, a framework to handle different life cycle phases of those definitions is presented and discussed. (c) 2007 Elsevier Ltd. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this work, we present a neural network (NN) based method designed for 3D rigid-body registration of FMRI time series, which relies on a limited number of Fourier coefficients of the images to be aligned. These coefficients, which are comprised in a small cubic neighborhood located at the first octant of a 3D Fourier space (including the DC component), are then fed into six NN during the learning stage. Each NN yields the estimates of a registration parameter. The proposed method was assessed for 3D rigid-body transformations, using DC neighborhoods of different sizes. The mean absolute registration errors are of approximately 0.030 mm in translations and 0.030 deg in rotations, for the typical motion amplitudes encountered in FMRI studies. The construction of the training set and the learning stage are fast requiring, respectively, 90 s and 1 to 12 s, depending on the number of input and hidden units of the NN. We believe that NN-based approaches to the problem of FMRI registration can be of great interest in the future. For instance, NN relying on limited K-space data (possibly in navigation echoes) can be a valid solution to the problem of prospective (in frame) FMRI registration.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Trabalho Final de Mestrado para obtenção do grau de Mestre em Engenharia Mecânica com especialização em Energia, Climatização e Refrigeração

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Trabalho Final de Mestrado para obtenção do grau de Mestre em Engenharia Mecânica

Relevância:

20.00% 20.00%

Publicador:

Resumo:

55th European Regional Science Association Congress, Lisbon, Portugal (25-28 August 2015).

Relevância:

20.00% 20.00%

Publicador:

Resumo:

For the past years wireless sensor networks (WSNs) have been coined as one of the most promising technologies for supporting a wide range of applications. However, outside the research community, few are the people who know what they are and what they can offer. Even fewer are the ones that have seen these networks used in real world applications. The main obstacle for the proliferation of these networks is energy, or the lack of it. Even though renewable energy sources are always present in the networks environment, designing devices that can efficiently scavenge that energy in order to sustain the operation of these networks is still an open challenge. Energy scavenging, along with energy efficiency and energy conservation, are the current available means to sustain the operation of these networks, and can all be framed within the broader concept of “Energetic Sustainability”. A comprehensive study of the several issues related to the energetic sustainability of WSNs is presented in this thesis, with a special focus in today’s applicable energy harvesting techniques and devices, and in the energy consumption of commercially available WSN hardware platforms. This work allows the understanding of the different energy concepts involving WSNs and the evaluation of the presented energy harvesting techniques for sustaining wireless sensor nodes. This survey is supported by a novel experimental analysis of the energy consumption of the most widespread commercially available WSN hardware platforms.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Micro- and nano-patterned materials are of great importance for the design of new nanoscale electronic, optical and mechanical devices, ranging from sensors to displays. A prospective system that can support a designed functionality is elastomeric polyurethane thin films with nano- or micromodulated surface structures ("wrinkles"). These wrinkles can be induced on different lengthscales by mechanically stretching the films, without the need for any sophisticated lithographic techniques. In the present article we focus on the experimental control of the wrinkling process. A simple model for wrinkle formation is also discussed, and some preliminary results reported. Hierarchical assembly of these tunable structures paves the way for the development of a new class of materials with a wide range of applications, from electronics to biomedicine.