906 resultados para Hybrid polymer networks


Relevância:

30.00% 30.00%

Publicador:

Resumo:

To date, biodegradable networks and particularly their kinetic chain lengths have been characterized by analysis of their degradation products in solution. We characterize the network itself by NMR analysis in the solvent-swollen state under magic angle spinning conditions. The networks were prepared by photoinitiated cross-linking of poly(dl-lactide)−dimethacrylate macromers (5 kg/mol) in the presence of an unreactive diluent. Using diffusion filtering and 2D correlation spectroscopy techniques, all network components are identified. By quantification of network-bound photoinitiator fragments, an average kinetic chain length of 9 ± 2 methacrylate units is determined. The PDLLA macromer solution was also used with a dye to prepare computer-designed structures by stereolithography. For these networks structures, the average kinetic chain length is 24 ± 4 methacrylate units. In all cases the calculated molecular weights of the polymethacrylate chains after degradation are maximally 8.8 kg/mol, which is far below the threshold for renal clearance. Upon incubation in phosphate buffered saline at 37 °C, the networks show a similar mass loss profile in time as linear high-molecular-weight PDLLA (HMW PDLLA). The mechanical properties are preserved longer for the PDLLA networks than for HMW PDLLA. The initial tensile strength of 47 ± 2 MPa does not decrease significantly for the first 15 weeks, while HMW PDLLA lost 85 ± 5% of its strength within 5 weeks. The physical properties, kinetic chain length, and degradation profile of these photo-cross-linked PDLLA networks make them most suited materials for orthopedic applications and use in (bone) tissue engineering.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Poly(D,L-lactide) is a degradable polymer with a long history of use in medical applications. It is strong and stiff and degrades over the course of months into lactic acid, a body-own substance. In the field of tissue engineering it is commonly used to fabricate scaffolds. Stereolithography is a high resolution rapid prototyping technique by which designed 3D objects can be built using photo-initiated radical polymerisations. Poly(D,Llactide) (PDLLA) networks can be obtained by photopolymerisation of oligomers functionalised with unsaturated groups. In this work, PDLLA oligomers of varying architectures (arm lengths, numbers of arms) were synthesised and end-functionalised with methacrylate groups. These macromers were photo-crosslinked in solution to yield PDLLA networks of different architectures. The influence of the network architecture on its physical properties was studied.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Optimal scheduling of voltage regulators (VRs), fixed and switched capacitors and voltage on customer side of transformer (VCT) along with the optimal allocaton of VRs and capacitors are performed using a hybrid optimisation method based on discrete particle swarm optimisation and genetic algorithm. Direct optimisation of the tap position is not appropriate since in general the high voltage (HV) side voltage is not known. Therefore, the tap setting can be determined give the optimal VCT once the HV side voltage is known. The objective function is composed of the distribution line loss cost, the peak power loss cost and capacitors' and VRs' capital, operation and maintenance costs. The constraints are limits on bus voltage and feeder current along with VR taps. The bus voltage should be maintained within the standard level and the feeder current should not exceed the feeder-rated current. The taps are to adjust the output voltage of VRs between 90 and 110% of their input voltages. For validation of the proposed method, the 18-bus IEEE system is used. The results are compared with prior publications to illustrate the benefit of the employed technique. The results also show that the lowest cost planning for voltage profile will be achieved if a combination of capacitors, VRs and VCTs is considered.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The building and construction sector is one of the five largest contributors to the Australian economy and is a key performance component in the economy of many other jurisdictions. However, the ongoing viability of this sector is increasingly reliant on its ability to foster and transfer innovated products and practices. Interorganisational networks, which bring together key industry stakeholders and facilitate the flows of information, resources and trust necessary to secure innovation, have emerged as a key growth strategy within this and other arenas. The blending of organisations, resources and purposes creates new, hybrid institutional forms that draw on a mix of contract, structure and interpersonal relationship as integration processes. This paper argues that hybrid networked arrangements, because they incorporate relational elements, require management strategies and techniques that not always synonymous with conventional management approaches, including those used within the building and construction sector. It traces the emergence of the Construction Innovation Project in Australia as a hybrid institutional arrangement moulding public, private and academic stakeholders of the building and construction industry into a coherent collective force aimed at fostering innovation and its application within all levels of the industry. Specifically, the paper examines the Construction Innovation Project to ascertain the impact of relational governance and its management to harness and leverage the skills, resources and capacities of members to secure innovative outcomes. Finally, the paper offers some prospects to guide the ongoing work of this body and any other charged with a similar integrative responsibility.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In this feasibility study an organic plastic scintillator is calibrated against ionisation chamber measurements and then embedded in a polymer gel dosimeter to obtain a quasi-4D experimental measurement of a radiation field. This hybrid dosimeter was irradiated with a linear accelerator, with temporal measurements of the dose rate being acquired by the scintillator and spatial measurements acquired with the gel dosimeter. The detectors employed in this work are radiologically equivalent; and we show that neither detector perturbs the intensity of the radiation field of the other. By employing these detectors in concert, spatial and temporal variations in the radiation intensity can now be detected and gel dosimeters can be calibrated for absolute dose from a single irradiation.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In this paper, a comprehensive planning methodology is proposed that can minimize the line loss, maximize the reliability and improve the voltage profile in a distribution network. The injected active and reactive power of Distributed Generators (DG) and the installed capacitor sizes at different buses and for different load levels are optimally controlled. The tap setting of HV/MV transformer along with the line and transformer upgrading is also included in the objective function. A hybrid optimization method, called Hybrid Discrete Particle Swarm Optimization (HDPSO), is introduced to solve this nonlinear and discrete optimization problem. The proposed HDPSO approach is a developed version of DPSO in which the diversity of the optimizing variables is increased using the genetic algorithm operators to avoid trapping in local minima. The objective function is composed of the investment cost of DGs, capacitors, distribution lines and HV/MV transformer, the line loss, and the reliability. All of these elements are converted into genuine dollars. Given this, a single-objective optimization method is sufficient. The bus voltage and the line current as constraints are satisfied during the optimization procedure. The IEEE 18-bus test system is modified and employed to evaluate the proposed algorithm. The results illustrate the unavoidable need for optimal control on the DG active and reactive power and capacitors in distribution networks.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This chapter analyses the poly(3-hexylthiophene) self-assembly on carbon nanotubes and the interaction between the two materials forming a new hybrid nanostructure. The chapter starts with a review of the several studies investigating polymers and biomolecules self-assembled on nanotubes. Then conducting polymers and polythiophenes are briefly introduced. Accordingly, carbon nanotube structure and properties are reported in Sect. 3. The experimental section starts with the bulk characterisation of polymer thin films with the inclusion of uniformly distributed carbon nanotubes. By using volume film analysis techniques (AFM, TEM, UV–Vis and Raman), we show how the polymer’s higher degree of order is a direct consequence of interaction with carbon nanotubes. Nevertheless, it is through the use of nanoscale analysis and molecular dynamic simulations that the self-assembly of the polymer on the nanotube surface can be clearly evidenced and characterised. In Sect. 6, the effect of the carbon templating structure on the P3HT organisation on the surface is investigated, showing the chirality-driven polymer assembly on the carbon nanotube surface. The interaction between P3HT and CNTs brings also to charge transfer, with the modification of physical properties for both species. In particular, the alteration of the polymer electronic properties and the modification of the nanotube mechanical structure are a direct consequence of the P3HT p-p stacking on the nanotube surface. Finally, some considerations based on molecular dynamics studies are reported in order to confirm and support the experimental results discussed.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Ambient media architecture can provide place-based collaborative learning experiences and pathways for social interactions that would not be otherwise possible. This paper is concerned with ways of enhancing peer-to-peer learning affordances in library spaces; how can the library facilitate the community of library users to learn from each other? We report on the findings of a study that employed a participatory design method where participants were asked to reflect and draw places, social networks, and activities that they use to work (be creative, productive), play (have fun, socialize, be entertained), and learn (acquire new information, knowledge, or skills). The results illustrate how informal learning – learning outside the formal education system – is facilitated by a personal selection of physical and socio-cultural environments, as well as online tools, platforms, and networks. This paper sheds light on participants’ individually curated ecologies of their work, play, and learning related networks and the hybrid (physical and digital) nature of these places. These insights reveal opportunities for ambient media architecture to increase awareness of and connections between people’s hybrid personal learning environments.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In the past few years, remarkable progress has been made in unveiling novel and unique optical properties of strongly coupled plasmonic nanostructures. However, application of such plasmonic nanostructures in biomedicine remains challenging due to the lack of facile and robust assembly methods for producing stable nanostructures. Previous attempts to achieve plasmonic nano-assemblies using molecular ligands were limited due to the lack of flexibility that could be exercised in forming them. Here, we report the utilization of tailor-made hyperbranched polymers (HBP) as linkers to assemble gold nanoparticles (NPs) into nano-assemblies. The ease and flexibility in tuning the particle size and number of branch ends of a HBP makes it an ideal candidate as a linker, as opposed to DNA, small organic molecules and linear or dendrimeric polymers. We report a strong correlation of polymer (HBP) concentration with the size of the hybrid nano-assemblies and “hot-spot” density. We have shown that such solutions of stable HBP-gold nano-assemblies can be barcoded with various Raman tags to provide improved surface-enhanced Raman scattering (SERS) compared with non-aggregated NP systems. These Raman barcoded hybrid nano-assemblies, with further optimization of NP shape, size and “hot-spot” density, may find application as diagnostic tools in nanomedicine.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

With an increasing number of small-scale renewable generator installations, distribution network planners are faced with new technical challenges (intermittent load flows, network imbalances…). Then again, these decentralized generators (DGs) present opportunities regarding savings on network infrastructure if installed at strategic locations. How can we consider both of these aspects when building decision tools for planning future distribution networks? This paper presents a simulation framework which combines two modeling techniques: agent-based modeling (ABM) and particle swarm optimization (PSO). ABM is used to represent the different system units of the network accurately and dynamically, simulating over short time-periods. PSO is then used to find the most economical configuration of DGs over longer periods of time. The infrastructure of the framework is introduced, presenting the two modeling techniques and their integration. A case study of Townsville, Australia, is then used to illustrate the platform implementation and the outputs of a simulation.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Secure communications in wireless sensor networks operating under adversarial conditions require providing pairwise (symmetric) keys to sensor nodes. In large scale deployment scenarios, there is no prior knowledge of post deployment network configuration since nodes may be randomly scattered over a hostile territory. Thus, shared keys must be distributed before deployment to provide each node a key-chain. For large sensor networks it is infeasible to store a unique key for all other nodes in the key-chain of a sensor node. Consequently, for secure communication either two nodes have a key in common in their key-chains and they have a wireless link between them, or there is a path, called key-path, among these two nodes where each pair of neighboring nodes on this path have a key in common. Length of the key-path is the key factor for efficiency of the design. This paper presents novel deterministic and hybrid approaches based on Combinatorial Design for deciding how many and which keys to assign to each key-chain before the sensor network deployment. In particular, Balanced Incomplete Block Designs (BIBD) and Generalized Quadrangles (GQ) are mapped to obtain efficient key distribution schemes. Performance and security properties of the proposed schemes are studied both analytically and computationally. Comparison to related work shows that the combinatorial approach produces better connectivity with smaller key-chain sizes.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This chapter presents a comparative survey of recent key management (key distribution, discovery, establishment and update) solutions for wireless sensor networks. We consider both distributed and hierarchical sensor network architectures where unicast, multicast and broadcast types of communication take place. Probabilistic, deterministic and hybrid key management solutions are presented, and we determine a set of metrics to quantify their security properties and resource usage such as processing, storage and communication overheads. We provide a taxonomy of solutions, and identify trade-offs in these schemes to conclude that there is no one-size-fits-all solution.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

ZnO is a wide band-gap semiconductor that has several desirable properties for optoelectronic devices. With its large exciton binding energy of ~60 meV, ZnO is a promising candidate for high stability, room-temperature luminescent and lasing devices [1]. Ultraviolet light-emitting diodes (LEDs) based on ZnO homojunctions had been reported [2,3], while preparing stable p-type ZnO is still a challenge. An alternative way is to use other p-type semiconductors, ether inorganic or organic, to form heterojunctions with the naturally n-type ZnO. The crystal structure of wurtzite ZnO can be described as Zn and O atomic layers alternately stacked along the [0001] direction. Because of the fastest growth rate over the polar (0001) facet, ZnO crystals tend to grow into one-dimensional structures, such as nanowires and nanobelts. Since the first report of ZnO nanobelts in 2001 [4], ZnO nanostructures have been particularly studied for their potential applications in nano-sized devices. Various growth methods have been developed for growing ZnO nanostructures, such as chemical vapor deposition (CVD), Metal-organic CVD (MOCVD), aqueous growth and electrodeposition [5]. Based on the successful synthesis of ZnO nanowires/nanorods, various types of hybrid light-emitting diodes (LEDs) were made. Inorganic p-type semiconductors, such as GaN, Si and SiC, have been used as substrates to grown ZnO nanorods/nanowires for making LEDs. GaN is an ideal material that matches ZnO not only in the crystal structure but also in the energy band levels. However, to prepare Mg-doped p-GaN films via epitaxial growth is still costly. In comparison, the organic semiconductors are inexpensive and have many options to select, for a large variety of p-type polymer or small-molecule semiconductors are now commercially available. The organic semiconductor has the limitation of durability and environmental stability. Many polymer semiconductors are susceptible to damage by humidity or mere exposure to oxygen in the air. Also the carrier mobilities of polymer semiconductors are generally lower than the inorganic semiconductors. However, the combination of polymer semiconductors and ZnO nanostructures opens the way for making flexible LEDs. There are few reports on the hybrid LEDs based on ZnO/polymer heterojunctions, some of them showed the characteristic UV electroluminescence (EL) of ZnO. This chapter reports recent progress of the hybrid LEDs based on ZnO nanowires and other inorganic/organic semiconductors. We provide an overview of the ZnO-nanowire-based hybrid LEDs from the perspectives of the device configuration, growth methods of ZnO nanowires and the selection of p-type semiconductors. Also the device performances and remaining issues are presented.