196 resultados para Hurricanes.


Relevância:

10.00% 10.00%

Publicador:

Resumo:

The first essay developed a respondent model of Bayesian updating for a double-bound dichotomous choice (DB-DC) contingent valuation methodology. I demonstrated by way of data simulations that current DB-DC identifications of true willingness-to-pay (WTP) may often fail given this respondent Bayesian updating context. Further simulations demonstrated that a simple extension of current DB-DC identifications derived explicitly from the Bayesian updating behavioral model can correct for much of the WTP bias. Additional results provided caution to viewing respondents as acting strategically toward the second bid. Finally, an empirical application confirmed the simulation outcomes. The second essay applied a hedonic property value model to a unique water quality (WQ) dataset for a year-round, urban, and coastal housing market in South Florida, and found evidence that various WQ measures affect waterfront housing prices in this setting. However, the results indicated that this relationship is not consistent across any of the six particular WQ variables used, and is furthermore dependent upon the specific descriptive statistic employed to represent the WQ measure in the empirical analysis. These results continue to underscore the need to better understand both the WQ measure and its statistical form homebuyers use in making their purchase decision. The third essay addressed a limitation to existing hurricane evacuation modeling aspects by developing a dynamic model of hurricane evacuation behavior. A household's evacuation decision was framed as an optimal stopping problem where every potential evacuation time period prior to the actual hurricane landfall, the household's optimal choice is to either evacuate, or to wait one more time period for a revised hurricane forecast. A hypothetical two-period model of evacuation and a realistic multi-period model of evacuation that incorporates actual forecast and evacuation cost data for my designated Gulf of Mexico region were developed for the dynamic analysis. Results from the multi-period model were calibrated with existing evacuation timing data from a number of hurricanes. Given the calibrated dynamic framework, a number of policy questions that plausibly affect the timing of household evacuations were analyzed, and a deeper understanding of existing empirical outcomes in regard to the timing of the evacuation decision was achieved.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Long term management plans for restoration of natural flow conditions through the Everglades increase the importance of understanding potential nutrient impacts of increased freshwater delivery on coastal biogeochemistry. The present study sought to increase understanding of the coastal marine system of South Florida under modern conditions and through the anthropogenic changes in the last century, on scales ranging from individual nutrient cycle processes to seasonal patterns in organic material (OM) under varying hydrodynamic regime, to century scale analysis of sedimentary records. In all applications, carbon and nitrogen stable isotopic compositions of OM were examined as natural recorders of change and nutrient cycling in the coastal system. ^ High spatial and temporal variability in stable isotopic compositions were observed on all time scales. During a transient phytoplankton bloom, δ 15N values suggested nitrogen fixation as a nutrient source supporting enhanced productivity. Seasonally, particulate organic material (POM) from ten sites along the Florida Reef Tract and in Florida Bay demonstrated variable fluctuations dependent on hydrodynamic setting. Three separate intra-annual patterns were observed, yet statistical differences were observed between groupings of Florida Bay and Atlantic Ocean sites. The POM δ 15N values ranged on a quarterly basis by 7‰, while δ 13C varied by 22‰. From a sediment history perspective, four cores collected from Florida Bay further demonstrated the spatial and temporal variability of the system in isotopic composition of bulk OM over time. Source inputs of OM varied with location, with terrestrial inputs dominating proximal to Everglades freshwater discharge, seagrasses dominating in open estuary cores, and a marine mixture of phytoplankton and seagrass in a core from the boundary zone between Florida Bay and the Gulf of Mexico. Significant shifts in OM geochemistry were observed coincident with anthropogenic events of the 20th century, including railroad and road construction in the Florida Keys and Everglades, and also the extensive drainage changes in Everglades hydrology. The sediment record also preserved evidence of the major hurricanes of the last century, with excursions in geochemical composition coincident with Category 4-5 storms. ^

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Efforts that are underway to rehabilitate the Florida Bay ecosystem to a more natural state are best guided by a comprehensive understanding of the natural versus human-induced variability that has existed within the ecosystem. Benthic foraminifera, which are well-known paleoenvironmental indicators, were identified in 203 sediment samples from six sediment cores taken from Florida Bay, and analyzed to understand the environmental variability through anthropogenically unaltered and altered periods. In this research, taxa serving as indicators of (1) seagrass abundance (which is correlated with water quality), (2) salinity, and (3) general habitat change, were studied in detail over the past 120 years, and more generally over the past ~4000 years. Historical seagrass abundance was reconstructed with the proportions of species that prefer living attached to seagrass blades over other substrates. Historical salinity trends were determined by analyzing brackish versus marine faunas, which were defined based on species’ salinity preferences. Statistical methods including cluster analysis, discriminant analysis, analysis of variance and Fisher’s α were used to analyze trends in the data. The changes in seagrass abundance and salinity over the last ~120 years are attributed to anthropogenic activities such as construction of the Flagler Railroad from the mainland to the Florida Keys, the Tamiami Trail that stretches from the east to west coast, and canals and levees in south Florida, as well as natural events such as droughts and increased rainfall from hurricanes. Longer term changes (over ~4000 years) in seagrass abundance and salinity are mostly related to sea level changes. Since seawater entered the Florida Bay area around ~4000 years ago, only one probable sea level drop occurring around ~3000 years was identified.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

An emergency is a deviation from a planned course of events that endangers people, properties, or the environment. It can be described as an unexpected event that causes economic damage, destruction, and human suffering. When a disaster happens, Emergency Managers are expected to have a response plan to most likely disaster scenarios. Unlike earthquakes and terrorist attacks, a hurricane response plan can be activated ahead of time, since a hurricane is predicted at least five days before it makes landfall. This research looked into the logistics aspects of the problem, in an attempt to develop a hurricane relief distribution network model. We addressed the problem of how to efficiently and effectively deliver basic relief goods to victims of a hurricane disaster. Specifically, where to preposition State Staging Areas (SSA), which Points of Distributions (PODs) to activate, and the allocation of commodities to each POD. Previous research has addressed several of these issues, but not with the incorporation of the random behavior of the hurricane's intensity and path. This research presents a stochastic meta-model that deals with the location of SSAs and the allocation of commodities. The novelty of the model is that it treats the strength and path of the hurricane as stochastic processes, and models them as Discrete Markov Chains. The demand is also treated as stochastic parameter because it depends on the stochastic behavior of the hurricane. However, for the meta-model, the demand is an input that is determined using Hazards United States (HAZUS), a software developed by the Federal Emergency Management Agency (FEMA) that estimates losses due to hurricanes and floods. A solution heuristic has been developed based on simulated annealing. Since the meta-model is a multi-objective problem, the heuristic is a multi-objective simulated annealing (MOSA), in which the initial solution and the cooling rate were determined via a Design of Experiments. The experiment showed that the initial temperature (T0) is irrelevant, but temperature reduction (δ) must be very gradual. Assessment of the meta-model indicates that the Markov Chains performed as well or better than forecasts made by the National Hurricane Center (NHC). Tests of the MOSA showed that it provides solutions in an efficient manner. Thus, an illustrative example shows that the meta-model is practical.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Traffic from major hurricane evacuations is known to cause severe gridlocks on evacuation routes. Better prediction of the expected amount of evacuation traffic is needed to improve the decision-making process for the required evacuation routes and possible deployment of special traffic operations, such as contraflow. The objective of this dissertation is to develop prediction models to predict the number of daily trips and the evacuation distance during a hurricane evacuation. ^ Two data sets from the surveys of the evacuees from Hurricanes Katrina and Ivan were used in the models' development. The data sets included detailed information on the evacuees, including their evacuation days, evacuation distance, distance to the hurricane location, and their associated socioeconomic characteristics, including gender, age, race, household size, rental status, income, and education level. ^ Three prediction models were developed. The evacuation trip and rate models were developed using logistic regression. Together, they were used to predict the number of daily trips generated before hurricane landfall. These daily predictions allowed for more detailed planning over the traditional models, which predicted the total number of trips generated from an entire evacuation. A third model developed attempted to predict the evacuation distance using Geographically Weighted Regression (GWR), which was able to account for the spatial variations found among the different evacuation areas, in terms of impacts from the model predictors. All three models were developed using the survey data set from Hurricane Katrina and then evaluated using the survey data set from Hurricane Ivan. ^ All of the models developed provided logical results. The logistic models showed that larger households with people under age six were more likely to evacuate than smaller households. The GWR-based evacuation distance model showed that the household with children under age six, income, and proximity of household to hurricane path, all had an impact on the evacuation distances. While the models were found to provide logical results, it was recognized that they were calibrated and evaluated with relatively limited survey data. The models can be refined with additional data from future hurricane surveys, including additional variables, such as the time of day of the evacuation. ^

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The major objectives of this dissertation were to develop optimal spatial techniques to model the spatial-temporal changes of the lake sediments and their nutrients from 1988 to 2006, and evaluate the impacts of the hurricanes occurred during 1998–2006. Mud zone reduced about 10.5% from 1988 to 1998, and increased about 6.2% from 1998 to 2006. Mud areas, volumes and weight were calculated using validated Kriging models. From 1988 to 1998, mud thicknesses increased up to 26 cm in the central lake area. The mud area and volume decreased about 13.78% and 10.26%, respectively. From 1998 to 2006, mud depths declined by up to 41 cm in the central lake area, mud volume reduced about 27%. Mud weight increased up to 29.32% from 1988 to 1998, but reduced over 20% from 1998 to 2006. The reduction of mud sediments is likely due to re-suspension and redistribution by waves and currents produced by large storm events, particularly Hurricanes Frances and Jeanne in 2004 and Wilma in 2005. Regression, kriging, geographically weighted regression (GWR) and regression-kriging models have been calibrated and validated for the spatial analysis of the sediments TP and TN of the lake. GWR models provide the most accurate predictions for TP and TN based on model performance and error analysis. TP values declined from an average of 651 to 593 mg/kg from 1998 to 2006, especially in the lake’s western and southern regions. From 1988 to 1998, TP declined in the northern and southern areas, and increased in the central-western part of the lake. The TP weights increased about 37.99%–43.68% from 1988 to 1998 and decreased about 29.72%–34.42% from 1998 to 2006. From 1988 to 1998, TN decreased in most areas, especially in the northern and southern lake regions; western littoral zone had the biggest increase, up to 40,000 mg/kg. From 1998 to 2006, TN declined from an average of 9,363 to 8,926 mg/kg, especially in the central and southern regions. The biggest increases occurred in the northern lake and southern edge areas. TN weights increased about 15%–16.2% from 1988 to 1998, and decreased about 7%–11% from 1998 to 2006.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Mexico harbors more than 10% of the planet’s endemic species. However, the integrity and biodiversity of many ecosystems is experiencing rapid transformation under the influence of a wide array of human and natural disturbances. In order to disentangle the effects of human and natural disturbance regimes at different spatial and temporal scales, we selected six terrestrial (temperate montane forests, montane cloud forests, tropical rain forests, tropical semi-deciduous forests, tropical dry forests, and deserts) and four aquatic (coral reefs, mangrove forests, kelp forests and saline lakes) ecosystems. We used semiquantitative statistical methods to assess (1) the most important agents of disturbance affecting the ecosystems, (2) the vulnerability of each ecosystem to anthropogenic and natural disturbance, and (3) the differences in ecosystem disturbance regimes and their resilience. Our analysis indicates a significant variation in ecological responses, recovery capacity, and resilience among ecosystems. The constant and widespread presence of human impacts on both terrestrial and aquatic ecosystems is reflected either in reduced area coverage for most systems, or reduced productivity and biodiversity, particularly in the case of fragile ecosystems (e.g., rain forests, coral reefs). In all cases, the interaction between historical human impacts and episodic high intensity natural disturbance (e.g., hurricanes, fires) has triggered a reduction in species diversity and induced significant changes in habitat distribution or species dominance. The lack of monitoring programs assessing before/after effects of major disturbances in Mexico is one of the major limitations to quantifying the commonalities and differences of disturbance effects on ecosystem properties.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

This study on risk and disaster management capacities of four Caribbean countries: Barbados, the Dominican Republic, Jamaica, and Trinidad and Tobago, examines three main dimensions: 1) the impact of natural disasters from 1900 to 2010 (number of events, number of people killed, total number affected, and damage in US$); 2) institutional assessments of disaster risk management disparity; and 3) the 2010 Inter-American Bank for Development (IADB) Disaster Risk and Risk Management indicators for the countries under study. The results show high consistency among the different sources examined, pointing out the need to extend the IADB measurements to the rest of the Caribbean countries. Indexes and indicators constitute a comparison measure vis-à-vis existing benchmarks in order to anticipate a capacity to deal with adverse events and their consequences; however, the indexes and indicators could only be tested against the occurrence of a real event. Therefore, the need exists to establish a sustainable and comprehensive evaluation system after important disasters to assess a country‘s performance, verify the indicators, and gain feedback on measurement systems and methodologies. There is diversity in emergency and preparedness for disasters in the four countries under study. The nature of the event (hurricanes, earthquakes, floods, and seismic activity), especially its frequency and the intensity of the damage experienced, is related to how each has designed its risk and disaster management policies and programs to face natural disasters. Vulnerabilities to disaster risks have been increasing, among other factors, because of uncontrolled urbanization, demographic density and poverty increase, social and economic marginalization, and lack of building code enforcement. The four countries under study have shown improvements in risk management capabilities, yet they are far from being completed prepared. Barbados‘ risk management performance is superior, in comparison, to the majority of the countries of the region. However, is still far in achieving high performance levels and sustainability in risk management, primarily when it has the highest gap between potential macroeconomic and financial losses and the ability to face them. The Dominican Republic has shown steady risk performance up to 2008, but two remaining areas for improvement are hazard monitoring and early warning systems. Jamaica has made uneven advances between 1990 and 2008, requiring significant improvements to achieve high performance levels and sustainability in risk management, as well as macroeconomic mitigation infrastructure. Trinidad and Tobago has the lowest risk management score of the 15 countries in the Latin American and Caribbean region as assessed by the IADB study in 2010, yet it has experienced an important vulnerability reduction. In sum, the results confirmed the high disaster risk management disparity in the Caribbean region.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

How do local homeland security organizations respond to catastrophic events such as hurricanes and acts of terrorism? Among the most important aspects of this response are these organizations ability to adapt to the uncertain nature of these "focusing events" (Birkland 1997). They are often behind the curve, seeing response as a linear process, when in fact it is a complex, multifaceted process that requires understanding the interactions between the fiscal pressures facing local governments, the institutional pressures of working within a new regulatory framework and the political pressures of bringing together different levels of government with different perspectives and agendas. ^ This dissertation has focused on tracing the factors affecting the individuals and institutions planning, preparing, responding and recovering from natural and man-made disasters. Using social network analysis, my study analyzes the interactions between the individuals and institutions that respond to these "focusing events." In practice, it is the combination of budgetary, institutional, and political pressures or constraints interacting with each other which resembles a Complex Adaptive System (CAS). ^ To investigate this system, my study evaluates the evolution of two separate sets of organizations composed of first responders (Fire Chiefs, Emergency Management Coordinators) and community volunteers organized in the state of Florida over the last fifteen years. Using a social network analysis approach, my dissertation analyzes the interactions between Citizen Corps Councils (CCCs) and Community Emergency Response Teams (CERTs) in the state of Florida from 1996–2011. It is the pattern of interconnections that occur over time that are the focus of this study. ^ The social network analysis revealed an increase in the amount and density of connections between these organizations over the last fifteen years. The analysis also exposed the underlying patterns in these connections; that as the networks became more complex they also became more decentralized though not in any uniform manner. The present study brings to light a story of how communities have adapted to the ever changing circumstances that are sine qua non of natural and man-made disasters.^

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Sea-level rise presents an imminent threat to freshwater-dependent ecosystems on small oceanic islands, which often harbor rare and endemic taxa. Conservation of these assemblages is complicated by feedbacks between sea level and recurring pulse disturbances (eg hurricanes, fire). Once sea level reaches a critical level, the transition from a landscape characterized by mesophytic upland forests and freshwater wetlands to one dominated by mangroves can occur suddenly, following a single storm-surge event. We document such a trajectory, unfolding today in the Florida Keys. With sea level projected to rise substantially during the next century, ex-situ actions may be needed to conserve individual species of special concern. However, within existing public conservation units, managers have a responsibility to conserve extant biodiversity. We propose a strategy that combines the identification and intensive management of the most defensible core sites within a broader reserve system, in which refugia for biota facing local extirpation may be sought.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Precipitation data collected from five sites in south Florida indicate a strong seasonal and spatial variation in δ18O and δD, despite the relatively limited geographic coverage and low-lying elevation of each of the collection sites. Based upon the weighted-mean stable isotope values, the sites were classified as coastal Atlantic, inland, and lower Florida Keys. The coastal Atlantic sites had weighted-mean values of δ18O and δD of −2.86‰ and −12.8‰, respectively, and exhibited a seasonal variation with lower δ18O and δD values in the summer wet-season precipitation (δ18O = −3.38‰, δD = −16.5‰) as compared to the winter-time precipitation (δ18O = −1.66‰, δD = −3.2‰). The inland site was characterized as having the highest d-excess value (+13.3‰), signifying a contribution of evaporated Everglades surface water to the local atmospheric moisture. In spite of its lower latitude, the lower Keys site located at Long Key had the lowest weighted-mean stable isotope values (δ18O = −3.64‰, δD = −20.2‰) as well as the lowest d-excess value of (+8.8‰). The lower δD and δ18O values observed at the Long Key site reflect the combined effects of oceanic vapor source, fractionation due to local precipitation, and slower equilibration of the larger raindrops nucleated by a maritime aerosol. Very low δ18O and δD values (δ18O < −6‰, δD < −40‰) were observed just prior to the passage of hurricanes from the Gulf of Mexico as well as during cold fronts from the north-west. These results suggest that an oceanic vapor source region to the west, may be responsible for the extremely low δD and δ18O values observed during some tropical storms and cold fronts.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Seagrass beds are the dominant benthic marine communities in the back reef environment of the Florida Keys. At a network of 30 permanent monitoring stations in this back reef environment, the seagrass Thalassia testudinum Banks & Soland. ex Koenig was the most common marine macrophyte, but the seagrasses Syringodium fi liforme Kuetz., and Halodule wrightii Aschers., as well as many taxa of macroalgae, were also commonly encountered. The calcareous green macroalgae, especially Halimeda spp. and Penicillus spp., were the most common macroalgae. The passage of Hurricane Georges on September 25, 1998 caused an immediate loss of 3% of the density of T. testudinum, compared to 19% of the S. fi liforme and 24% of the calcareous green algae. The seagrass beds at three of the stations were completely obliterated by the storm. Stations that had little to moderate sediment deposition recovered from the storm within 1 yr, while the station buried by 50 cm of sediment and the two stations that experienced substantial erosion had recovered very little during the 3 yrs after the storm. Early colonizers to these severely disturbed sites were calcareous green algae. Hurricanes may increase benthic macrophyte diversity by creating disturbed patches with the landscape, but moderate storm disturbance may actually reduce macrophyte diversity by removing the early successional species from mixed-species seagrass beds.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Florida Bay is a unique subtropical estuary that while historically oligotrophic, has been subjected to both natural and anthropogenic stressors, including hurricanes, coastal eutrophication and other impacts. These stressors have resulted in degradation of water quality in the past several decades, most evidenced by reoccurring blooms of the picocyanobacterium Synechococcus spp. Major nutrient inputs consist of freshwater flows to the eastern region from runoff and regulated canal releases, inputs from the Everglades to the central region via Taylor Slough, exchanges with the Gulf of Mexico, which include intermittent Shark River inputs to the western region, stormwater and wastewater from the Florida Keys, and atmospheric deposition. These nutrient inputs have resulted in a transition from strong phosphorus (P) limitation of phytoplankton in the eastern bay to nitrogen (N) limitation in the western bay. Large blooms of Synechococcus were most pronounced in the central bay region, in the area of transition between P and N limitation, in the mid-1990s. Although non-toxic, these blooms, which have continued intermittently through the early 2000s, resulted in significant sea-grass and benthic organism mortalities. A new suite of stressors in 2005, including the passages of Hurricanes Katrina, Rita, and Wilma, additional canal releases, and the initiation of road construction to widen the main roadway leading to the Keys, were correlated with a large Synechococcus bloom in the previously clear, strongly P- limited, northeastern region of the bay. Sustained for 3 years, this bloom was accompanied by a shift from P limitation to N limitation during its course. Nutrient bioassay experiments suggest that this bloom persisted due to the ability of Synechococcus to access organic N and P sources, microbial and geochemical cycling of organic and inorganic nutrients in the water column and between the water column and sediments (both suspended particles and benthos), and decreased grazing by benthic fauna due to their die-off.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Widespread damage to roofing materials (such as tiles and shingles) for low-rise buildings, even for weaker hurricanes, has raised concerns regarding design load provisions and construction practices. Currently the building codes used for designing low-rise building roofs are mainly based on testing results from building models which generally do not simulate the architectural features of roofing materials that may significantly influence the wind-induced pressures. Full-scale experimentation was conducted under high winds to investigate the effects of architectural details of high profile roof tiles and asphalt shingles on net pressures that are often responsible for damage to these roofing materials. Effects on the vulnerability of roofing materials were also studied. Different roof models with bare, tiled, and shingled roof decks were tested. Pressures acting on both top and bottom surfaces of the roofing materials were measured to understand their effects on the net uplift loading. The area-averaged peak pressure coefficients obtained from bare, tiled, and shingled roof decks were compared. In addition, a set of wind tunnel tests on a tiled roof deck model were conducted to verify the effects of tiles' cavity internal pressure. Both the full-scale and the wind tunnel test results showed that underside pressure of a roof tile could either aggravate or alleviate wind uplift on the tile based on its orientation on the roof with respect to the wind angle of attack. For shingles, the underside pressure could aggravate wind uplift if the shingle is located near the center of the roof deck. Bare deck modeling to estimate design wind uplift on shingled decks may be acceptable for most locations but not for field locations; it could underestimate the uplift on shingles by 30-60%. In addition, some initial quantification of the effects of roofing materials on wind uplift was performed by studying the wind uplift load ratio for tiled versus bare deck and shingled versus bare deck. Vulnerability curves, with and without considering the effects of tiles' cavity internal pressure, showed significant differences. Aerodynamic load provisions for low-rise buildings' roofs and their vulnerability can thus be more accurately evaluated by considering the effects of the roofing materials.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Woody debris is abundant in hurricane-impacted forests. With a major hurricane affecting South Florida mangroves approximately every 20 yr, carbon storage and nutrient retention may be influenced greatly by woody debris dynamics. In addition, woody debris can influence seedling regeneration in mangrove swamps by trapping propagules and enhancing seedling growth potential. Here, we report on line-intercept woody debris surveys conducted in mangrove wetlands of South Florida 9–10 yr after the passage of Hurricane Andrew. The total volume of woody debris for all sites combined was estimated at 67 m3/ha and varied from 13 to 181 m3/ha depending upon differences in forest height, proximity to the storm, and maximum estimated wind velocities. Large volumes of woody debris were found in the eyewall region of the hurricane, with a volume of 132 m3/ha and a projected woody debris biomass of approximately 36 t/ha. Approximately half of the woody debris biomass averaged across all sites was associated as small twigs and branches (fine woody debris), since coarse woody debris >7.5 cm felled during Hurricane Andrew was fairly well decomposed. Much of the small debris is likely to be associated with post-hurricane forest dynamics. Hurricanes are responsible for large amounts of damage to mangrove ecosystems, and components of associated downed wood may provide a relative index of disturbance for mangrove forests. Here, we suggest that a fine:coarse woody debris ratio ≤0.5 is suggestive of a recent disturbance in mangrove wetlands, although additional research is needed to corroborate such findings.