846 resultados para Hot melt adhesive
Resumo:
The properties of hot, dense stellar matter are investigated with a finite temperature nuclear Thomas-Fermi model.
Resumo:
We study energy-weighted sum rules of the pion and kaon propagator in nuclear matter at finite temperature. The sum rules are obtained from matching the Dyson form of the meson propagator with its spectral Lehmann representation at low and high energies. We calculate the sum rules for specific models of the kaon and pion self-energy. The in-medium spectral densities of the K and (K) over bar mesons are obtained from a chiral unitary approach in coupled channels that incorporates the S and P waves of the kaon-nucleon interaction. The pion self-energy is determined from the P-wave coupling to particle-hole and Delta-hole excitations, modified by short-range correlations. The sum rules for the lower-energy weights are fulfilled satisfactorily and reflect the contributions from the different quasiparticle and collective modes of the meson spectral function. We discuss the sensitivity of the sum rules to the distribution of spectral strength and their usefulness as quality tests of model calculations.
Resumo:
The kinetics of crystallization of four amorphous (or partially amorphous) melt spun Nd-Fe-B alloys induced by thermal treatment is studied by means of differential scanning calorimetry and scanning electron microscopy, In the range of temperatures explored experimentally, the crystallization process is thermally activated and generally proceeds in various stages. The Curie temperature and the crystallization behavior have been measured. The apparent activation energy of crystallization of most of the crystallization stages has been determined for each melt spun alloy. The explicit form of the kinetic equation that best describes the first stage of crystallization has been found. It follows in general the Johnson-Mehl-Avrami-Erofe'ev model, but clear deviations to that model occur for one alloy. Scanning electron microscopy demonstrates that preferentially hetereogeneous nucleation occurs at the ribbon surface which was in contact with the wheel. From crystallization kinetics results the lower part of the experimental time-temperature-transformation curves for all studied alloys are deduced and extrapolated to the high temperature limit of their range of validity, also deduced.
Resumo:
The aim of this article is to show which are the dramatic "yields" of the inclusion of the reference to the goddess Diana in Tennessee Williams's Cat on a Hot tin Roof. In the author's opinion, it does not deal simply with a meaningful reference; on the contrary, the accurate analysis of Williams's text proves that it is a true nuclear and cohesive element of the whole drama.
Resumo:
Dado que el referente clásico "Edipo en busca de su identidad" ha sido siempre reconocido para Suddenly Last Summer , el autor de este artículo, mediante un análisis minucioso del texto del dramaturgo americano, propone leer en este caso Cat on a Hot Tin Roof desde el modelo Edipo Rey de Sófocles y descubrir en él igualmente la tradicional ironía clásica tanto desde el punto de vista del espectador como de los mismos personajes principales, Brick y su padre, ambos en busca de su verdad, una verdad, claro está, contraria a la esperada.
Resumo:
Atès que el referent clàssic "Èdip en cerca de la seva identitat" ha estat sempre reconegut per a Suddenly Last Summer, l'autor d'aquest article, mitjançant una anàlisi acurada del text del dramaturg americà, proposa de llegir en aquest cas Can on a Hot tin Roof des del model Èdip Rei de Sòfocles i descobrir-hi igualment la tradicional ironia clàssica tant des del punt de vista de l'espectador com dels mateixos personatges principals, Brick i el seu pare, ambdós en cerca de la seva veritat, una veritat, és clar, contrària a la que esperaven.
Resumo:
L'objectiu d'aquest article és mostrar quins són els rèdits dramàtics de la inclusió de la referència a la deessa Diana a Cat on a Hot Tin Roof de Tennessee Williams. En opinió del autor, no es tracta simplement d'una referència significativa, sinó que l'anàlisi acurada del text de Williams demostra que és un element vertaderament nuclear i cohesionador de tot el drama.
Resumo:
El objetivo de este artículo es mostrar cuáles son los réditos dramáticos de la inclusión de la referencia a la diosa Diana en Cat on a Hot Tin Roof de Tennessee Williams. En opinión del autor, no se trata simplemente de una referencia significativa, sino que el análisis minucioso del texto de Williams demuestra que es un elemento verdaderamente nuclear y cohesionador de todo el drama.
Resumo:
In this work we study aluminium laser-fired contacts for intrinsic amorphous silicon layers deposited by Hot-Wire CVD. This structure could be used as an alternative low temperature back contact for rear passivated heterojunction solar cells. An infrared Nd:YAG laser (1064 nm) has been used to locally fire the aluminium through the thin amorphous silicon layers. Under optimized laser firing parameters, very low specific contact resistances (ρc ∼ 10 mΩ cm2) have been obtained on 2.8 Ω cm p-type c-Si wafers. This investigation focuses on maintaining the passivation quality of the interface without an excessive increase in the series resistance of the device.
Resumo:
The scaling up of the Hot Wire Chemical Vapor Deposition (HW-CVD) technique to large deposition area can be done using a catalytic net of equal spaced parallel filaments. The large area deposition limit is defined as the limit whenever a further increment of the catalytic net area does not affect the properties of the deposited film. This is the case when a dense catalytic net is spread on a surface considerably larger than that of the film substrate. To study this limit, a system able to hold a net of twelve wires covering a surface of about 20 cm x 20 cm was used to deposit amorphous (a-Si:H) and microcrystalline (μc-Si:H) silicon over a substrate of 10 cm x 10 cm placed at a filament-substrate distance ranging from 1 to 2 cm. The uniformity of the film thickness d and optical constants, n(x, λ) and α(x,¯hω), was studied via transmission measurements. The thin film uniformity as a function of the filament-substrate distance was studied. The experimental thickness profile was compared with the theoretical result obtained solving the diffusion equations. The optimization of the filament-substrate distance allowed obtaining films with inhomogeneities lower than ±2.5% and deposition rates higher than 1 nm/s and 4.5 nm/s for (μc-Si:H) and (a-Si:H), respectively.
Resumo:
Amorphous and nanocrystalline silicon films obtained by Hot-Wire Chemical Vapor Deposition have been incorporated as active layers in n-type coplanar top gate thin film transistors deposited on glass substrates covered with SiO 2. Amorphous silicon devices exhibited mobility values of 1.3 cm 2 V - 1 s - 1, which are very high taking into account the amorphous nature of the material. Nanocrystalline transistors presented mobility values as high as 11.5 cm 2 V - 1 s - 1 and resulted in low threshold voltage shift (∼ 0.5 V).
Resumo:
In this paper, we have presented results on silicon thin films deposited by hot-wire CVD at low substrate temperatures (200 °C). Films ranging from amorphous to nanocrystalline were obtained by varying the filament temperature from 1500 to 1800 °C. A crystalline fraction of 50% was obtained for the sample deposited at 1700 °C. The results obtained seemed to indicate that atomic hydrogen plays a leading role in the obtaining of nanocrystalline silicon. The optoelectronic properties of the amorphous material obtained in these conditions are slightly poorer than the ones observed in device-grade films grown by plasma-enhanced CVD due to a higher hydrogen incorporation (13%).
Resumo:
In this paper we present new results on doped μc-Si:H thin films deposited by hot-wire chemical vapour deposition (HWCVD) in the very low temperature range (125-275°C). The doped layers were obtained by the addition of diborane or phosphine in the gas phase during deposition. The incorporation of boron and phosphorus in the films and their influence on the crystalline fraction are studied by secondary ion mass spectrometry and Raman spectroscopy, respectively. Good electrical transport properties were obtained in this deposition regime, with best dark conductivities of 2.6 and 9.8 S cm -1 for the p- and n-doped films, respectively. The effect of the hydrogen dilution and the layer thickness on the electrical properties are also studied. Some technological conclusions referred to cross contamination could be deduced from the nominally undoped samples obtained in the same chamber after p- and n-type heavily doped layers.
Resumo:
We present a study on the development and the evaluation of a fully automated radio-frequency glow discharge system devoted to the deposition of amorphous thin film semiconductors and insulators. The following aspects were carefully addressed in the design of the reactor: (1) cross contamination by dopants and unstable gases, (2) capability of a fully automated operation, (3) precise control of the discharge parameters, particularly the substrate temperature, and (4) high chemical purity. The new reactor, named ARCAM, is a multiplasma-monochamber system consisting of three separated plasma chambers located inside the same isothermal vacuum vessel. Thus, the system benefits from the advantages of multichamber systems but keeps the simplicity and low cost of monochamber systems. The evaluation of the reactor performances showed that the oven-like structure combined with a differential dynamic pumping provides a high chemical purity in the deposition chamber. Moreover, the studies of the effects associated with the plasma recycling of material from the walls and of the thermal decomposition of diborane showed that the multiplasma-monochamber design is efficient for the production of abrupt interfaces in hydrogenated amorphous silicon (a-Si:H) based devices. Also, special attention was paid to the optimization of plasma conditions for the deposition of low density of states a-Si:H. Hence, we also present the results concerning the effects of the geometry, the substrate temperature, the radio frequency power and the silane pressure on the properties of the a-Si:H films. In particular, we found that a low density of states a-Si:H can be deposited at a wide range of substrate temperatures (100°C