974 resultados para Horizontal wavy surface
Resumo:
Using a model derived from lubrication theory, we consider the evolution of a thin viscous film coating the interior or exterior of a cylindrical tube. The flow is driven by surface tension and gravity and the liquid is assumed to wet the cylinder perfectly. When the tube is horizontal, we use large-time simulations to describe the bifurcation structure of the capillary equilibria appearing at low Bond number. We identify a new film configuration in which an isolated dry patch appears at the top of the tube and demonstrate hysteresis in the transition between rivulets and annular collars as the tube length is varied. For a tube tilted to the vertical, we show how a long initially uniform rivulet can break up first into isolated drops and then annular collars, which subsequently merge. We also show that the speed at which a localized drop moves down the base of a tilted tube is non-monotonic in tilt angle.
Resumo:
This study investigates the structure and intensity of the surface pathways connecting to and from the central areas of the large-scale convergence regions of the eastern Pacific Ocean. Surface waters are traced with numerical Lagrangian particles transported in the velocity field of three different ocean models with horizontal resolutions that range from ¼° to 1/32°. The connections resulting from the large-scale convergent Ekman dynamics agree qualitatively but are strongly modulated by eddy variability that introduces meridional asymmetry in the amplitude of transport. Lagrangian forward-in-time integrations are used to analyze the fate of particles originating from the central regions of the convergence zones and highlight specific outflows not yet reported for the southeastern Pacific when using the currents at the highest resolutions (1/12° and 1/32°). The meridional scales of these outflows are comparable to the characteristic width of the fine-scale striation of mean currents.
Resumo:
Caspian Sea with its unique characteristics is a significant source to supply required heat and moisture for passing weather systems over the north of Iran. Investigation of heat and moisture fluxes in the region and their effects on these systems that could lead to floods and major financial and human losses is essential in weather forecasting. Nowadays by improvement of numerical weather and climate prediction models and the increasing need to more accurate forecasting of heavy rainfall, the evaluation and verification of these models has been become much more important. In this study we have used the WRF model as a research-practical one with many valuable characteristics and flexibilities. In this research, the effects of heat and moisture fluxes of Caspian Sea on the synoptic and dynamical structure of 20 selective systems associated with heavy rainfall in the southern shores of Caspian Sea are investigated. These systems are selected based on the rainfall data gathered by three local stations named: Rasht, Babolsar and Gorgan in different seasons during a five-year period (2005-2010) with maximum amount of rainfall through the 24 hours of a day. In addition to synoptic analyses of these systems, the WRF model with and without surface flues was run using the two nested grids with the horizontal resolutions of 12 and 36 km. The results show that there are good consistencies between the predicted distribution of rainfall field, time of beginning and end of rainfall by the model and the observations. But the model underestimates the amounts of rainfall and the maximum difference with the observation is about 69%. Also, no significant changes in the results are seen when the domain and the resolution of computations are changed. The other noticeable point is that the systems are severely weakened by removing heat and moisture fluxes and thereby the amounts of large scale rainfall are decreased up to 77% and the convective rainfalls tend to zero.
Resumo:
our distinct nocturnal surface ozone (NSO) enhancement events were observed, with NSO concentration exceeding 80μg/m3, at multiple ozone (O3) monitoring stations (32 sites) in January, November and December between year 2000–2010, in Portugal. The reasonable explanation for the observed bimodal pattern of surface ozone with enhanced NSO concentration during nighttime has to be transport processes, as the surface ozone production ceases at nighttime. Simultaneous measurements of O3 at multiple stations during the study period in Portugal suggest that horizontal advection alone cannot explain the observed NSO enhancement. Thus, detailed analysis of the atmospheric conditions, simulated with the Weather Research and Forecasting (WRF) model, were performed to evaluate the atmospheric mechanisms responsible for NSO enhancement in the region. Simulations revealed that each event occurred as a result of one or the combination of different atmospheric processes such as, passage of a cold front followed by a subsidence zone; passage of a moving surface trough, with associated strong horizontal wind speed and vertical shear; combination of vertical and horizontal transport at the synoptic scale; formation of a low level jet with associated vertical mixing below the jet stream. The study confirmed that large-scale flow pattern resulting in enhanced vertical mixing in the nocturnal boundary layer, plays a key role in the NSO enhancement events, which frequently occur over Portugal during winter months.
Resumo:
-
Resumo:
This paper is concerned with the surface profiles of a strip after rigid bodies with serrated (saw-teeth) surfaces indent the strip and are subsequently removed. Plane-strain conditions are assumed. This has application in roughness transfer of final metal forming process. The effects of the semi-angle of the teeth, the depth of indentation and the friction on the contact surface on the profile are considered.