994 resultados para Horizontal Gene Exchange
Resumo:
We have performed a screen combining subtractive hybridization with PCR to isolate genes that are regulated when neuroepithelial (NE) cells differentiate into neurons. From this screen, we have isolated a number of known genes that have not previously been associated with neurogenesis, together with several novel genes. Here we report that one of these genes, encoding a guanine nucleotide exchange factor (GEF), is regulated during the differentiation of distinct neuronal populations. We have cloned both rat and mouse GEF genes and shown that they are orthologs of the human gene, MR-GEF, which encodes a GEF that specifically activates the small GTPase, Rap1. We have therefore named the rat gene rat mr-gef (rmr-gef) and the mouse gene mouse mr-gef (mmr-gef). Here, we will collectively refer to these two rodent genes as mr-gef. Expression studies show that mr-gef is expressed by young neurons of the developing rodent CNS but not by progenitor cells in the ventricular zone (VZ). The expression pattern of mr-gef during early telencephalic neurogenesis is strikingly similar to that of GABA and the LIM homeobox gene Lhx6, a transcription factor expressed by GABAergic interneurons generated in the ventral telencephalon, some of which migrate into the cortex during development. These observations suggest that mr-gef encodes a protein that is part of a signaling pathway involved in telencephalic neurogenesis; particularly in the development of GABAergic interneurons.
Resumo:
BACKGROUND: Autism Spectrum Conditions (ASC) are a group of developmental conditions which affect communication, social interactions and behaviour. Mitochondrial oxidative dysfunction has been suggested as a mechanism of autism based on the results of multiple genetic association and expression studies. SLC25A12 is a gene encoding a calcium-binding carrier protein that localizes to the mitochondria and is involved in the exchange of aspartate for glutamate in the inner membrane of the mitochondria regulating the cytosolic redox state. rs2056202 SNP in this gene has previously been associated with ASC. SNPs rs6716901 and rs3765166 analysed in this study have not been previously explored in association with AS. METHODS: We genotyped three SNPs (rs2056202, rs3765166, and rs6716901) in SLC25A12 in n?=?117 individuals with Asperger syndrome (AS) and n?=?426 controls, all of Caucasian ancestry. RESULTS: rs6716901 showed significant association with AS (P?=?0.008) after correcting for multiple testing. We did not replicate the previously identified association between rs2056202 and AS in our sample. Similarly, rs3765166 (P?=?0.11) showed no significant association with AS. CONCLUSION: The present study, in combination with previous studies, provides evidence for SLC25A12 as involved in the etiology of AS. Further cellular and molecular studies are required to elucidate the role of this gene in ASC.
Resumo:
Anthropogenic pressure influences the two-way interactions between shallow aquifers and coastal lagoons. Aquifer overexploitation may lead to seawater intrusion, and aquifer recharge from rainfall plus irrigation may, in turn, increase the groundwater discharge into the lagoon. We analyse the evolution, since the 1950s up to the present, of the interactions between the Campo de Cartagena Quaternary aquifer and the Mar Menor coastal lagoon (SE Spain). This is a very heterogeneous and anisotropic detrital aquifer, where aquifer–lagoon interface has a very irregular geometry. Using electrical resistivity tomography, we clearly identified the freshwater–saltwater transition zone and detected areas affected by seawater intrusion. Severity of the intrusion was spatially variable and significantly related to the density of irrigation wells in 1950s–1960s, suggesting the role of groundwater overexploitation. We distinguish two different mechanisms by which water from the sea invades the land: (a) horizontal advance of the interface due to a wide exploitation area and (b) vertical rise (upconing) caused by local intensive pumping. In general, shallow parts of the geophysical profiles show higher electrical resistivity associated with freshwater mainly coming from irrigation return flows, with water resources mostly from deep confined aquifers and imported from Tagus river, 400 km north. This indicates a likely reversal of the former seawater intrusion process.
Resumo:
We characterized four eEF1A genes in the alternative rhabditid nematode model organism Oscheius tipulae. This is twice the copy number of eEF1A genes in C. elegans, C. briggsae, and, probably, many other free-living and parasitic nematodes. The introns show features remarkably different from those of other metazoan eEF1A genes. Most of the introns in the eEF1A genes are specific to O. tipulae and are not shared with any of the other genes described in metazoans. Most of the introns are phase 0 (inserted between two codons), and few are inserted in protosplice sites (introns inserted between the nucleotide sequence A/CAG and G/A). Two of these phase 0 introns are conserved in sequence in two or more of the four eEF1A gene copies, and are inserted in the same position in the genes. Neither of these characteristics has been detected in any of the nematode eEF1A genes characterized to date. The coding sequences were also compared with other eEF1A cDNAs from 11 different nematodes to determine the variability of these genes within the phylum Nematoda. Parsimony and distance trees yielded similar topologies, which were similar to those created using other molecular markers. The presence of more than one copy of the eEF1A gene with nearly identical coding regions makes it difficult to define the orthologous cDNAs. As shown by our data on O. tipulae, careful and extensive examination of intron positions in the eEF1A gene across the phylum is necessary to define their potential for use as valid phylogenetic markers.
Resumo:
O objetivo deste estudo foi analisar o papel do polimorfismo de I/D do gene da Enzima Conversora de Angiotensina (ECA) e o polimorfismo K121Q da PC-1 nas modificações das taxas de filtração glomerular (TFG), excreção urinária de albumina (EUA) e pressão arterial em uma coorte de pacientes diabéticos tipo 1 normoalbuminúricos (EUA<20μg/min) em um estudo com seguimento de 10,2 ± 2,0anos (6,5 a 13,3 anos). A EUA (imunoturbidimetria), TFG (técnica da injeção única de 51Cr-EDTA), HbA1c (cromatografia de troca iônica) e pressão arterial foram medidas no início do estudo e a intervalos de 1,7 ± 0,6 anos. O polimorfismo I/D e K121Q foram determinados através da PCR e restrição enzimática. Onze pacientes apresentaram o genótipo II, 13 o ID e 6 apresentaram o genótipo DD. Pacientes com o alelo D (ID/DD) desenvolveram mais freqüentemente hipertensão arterial e retinopatia diabética. Os 3 pacientes do estudo que desenvolveram nefropatia diabética apresentaram o alelo D. Nos pacientes ID/DD (n=19) ocorreu maior redução da TFG quando comparados com os pacientes II (n=11) (-0,39 ± 0,29 vs – 0,12 ± 0,37 ml/min/mês; P=0,035). A presença do alelo D, em análise de regressão múltipla linear (R2=0,15; F=4,92; P=0,035) foi o único fator associado à redução da TFG (-0,29 ± 0,34 ml/min/mês; P<0,05). Já o aumento da EUA (log EUA = 0,0275 ± 0,042 μg/min/mês; P=0,002) foi associado somente aos níveis iniciais de EUA (R2=0,17; F=5,72; P=0,024). Um aumento significativo (P<0,05) no desenvolvimento de hipertensão arterial e de novos casos de retinopatia diabética foi observado somente nos pacientes com os genótipos ID/DD. Vinte e dois pacientes apresentaram genótipo KK, 7 KQ e 1 apresentou genótipo QQ. Pacientes com os genótipos KQ/QQ apresentaram um aumento significativo (P=0,045) de novos casos de retinopatia diabética. Em conclusão a presença do alelo D nesta amostra de pacientes DM tipo 1 normoalbuminúricos e normotensos está associada com aumento na proporção de complicações microvasculares e hipertensão arterial.
Resumo:
The expansion of global poultry production has increased the need to reduce or control the agents responsible for economic losses, including Salmonella spp. These bacteria are also of public health concern due to their potential to cause food poisoning, and, more recently, due to the antimicrobial resistance presented by these bacteria. Molecular biology is an important tool currently used in the diagnosis and research studies of main poultry diseases. The present studied analyzed 100 samples of Salmonella Enteritidis (SE) isolated from avian material aiming at detecting the class 1 integron gene, Integroninvolved in antimicrobial resistance, by means of polymerase chain reaction (PCR), and comparing it with plate inhibition test. Subsequently, SE samples were evaluated for their capacity to horizontally transfer this gene. There was no direct relationship between the presence of the class 1 integron gene and SE resistance to the 14 antimicrobials tested, as 80% of the studied samples were resistant to up to three antimicrobials, and did not present the aforementioned gene. However, horizontal transfer of this gene was accomplished in vitro (from Escherichia coli to Salmonella Enteritidis), demonstrating that capacity class 1 integron gene can be disseminated among enterobacteria.
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
In this study the Minos element was analyzed in 26 species of the repleta group and seven species of the saltans group of the genus Drosophila. The PCR and Southern blot analysis showed a wide occurrence of the Minos transposable element among species of the repleta and the saltans groups and also a low number of insertions in both genomes. Three different analyses, nucleotide divergence, historical associations, and comparisons between substitution rates (d(N) and d(S)) of Minos and Adh host gene sequences, suggest the occurrence of horizontal transfer between repleta and saltans species. These data reinforce and extend the Arca and Savakis [Genetica 108 (2000) 263] results and suggest five events of horizontal transfer to explain the present Minos distribution: between D. saltans and the ancestor of the mulleri and the mojavensis clusters; between D. hydei and the ancestor of the mulleri and the mojavensis clusters; between D. mojavensis and D. aldrichi; between D. buzzatii and D. serido; and between D. spenceri and D. emarginata. An alternative explanation would be that repeated events of horizontal transfer involving D. hydei, which is a cosmopolitan species that diverged from the others repleta species as long as 14 Mya, could have spread Minos within the repleta group and to D. saltans. The data presented in this article support a model in which distribution of Minos transposon among Drosophila species is determined by horizontal transmission balanced by vertical inactivation and extinction. (c) 2004 Elsevier B.V. All rights reserved.
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Pós-graduação em Agronomia (Genética e Melhoramento de Plantas) - FCAV
Resumo:
Background: Drought is a major abiotic stress that affects crop productivity worldwide. Sugarcane can withstand periods of water scarcity during the final stage of culm maturation, during which sucrose accumulation occurs. Meanwhile, prolonged periods of drought can cause severe plant losses. Methodology/Principal Findings: In a previous study, we evaluated the transcriptome of drought-stressed plants to better understand sugarcane responses to drought. Among the up-regulated genes was Scdr1 (sugarcane drought-responsive 1). The aim of the research reported here was to characterize this gene. Scdr1 encodes a putative protein containing 248 amino acids with a large number of proline (19%) and cysteine (13%) residues. Phylogenetic analysis showed that ScDR1is in a clade with homologs from other monocotyledonous plants, separate from those of dicotyledonous plants. The expression of Scdr1 in different varieties of sugarcane plants has not shown a clear association with drought tolerance. Conclusions/Significance: The overexpression of Scdr1 in transgenic tobacco plants increased their tolerance to drought, salinity and oxidative stress, as demonstrated by increased photosynthesis, water content, biomass, germination rate, chlorophyll content and reduced accumulation of ROS. Physiological parameters, such as transpiration rate (E), net photosynthesis (A), stomatal conductance (gs) and internal leaf CO2 concentration, were less affected by abiotic stresses in transgenic Scdr1 plants compared with wild-type plants. Overall, our results indicated that Scdr1 conferred tolerance to multiple abiotic stresses, highlighting the potential of this gene for biotechnological applications.
Resumo:
On the moderately complex terrain covered by dense tropical Amazon Rainforest (Reserva Biologica do Cuieiras-ZF2-02 degrees 36'17.1 '' S, 60 degrees 12'24.4 '' W), subcanopy horizontal and vertical gradients of the air temperature, CO2 concentration and wind field were measured for the dry and wet periods in 2006. We tested the hypothesis that horizontal drainage flow over this study area is significant and can affect the interpretation of the high carbon uptake rates reported by previous works at this site. A similar experimental design as the one by Tota et al. (2008) was used with a network of wind, air temperature, and CO2 sensors above and below the forest canopy. A persistent and systematic subcanopy nighttime upslope (positive buoyancy) and daytime downslope (negative buoyancy) flow pattern on a moderately inclined slope (12%) was observed. The microcirculations observed above the canopy (38 m) over the sloping area during nighttime presents a downward motion indicating vertical convergence and correspondent horizontal divergence toward the valley area. During the daytime an inverse pattern was observed. The microcirculations above the canopy were driven mainly by buoyancy balancing the pressure gradient forces. In the subcanopy space the microcirculations were also driven by the same physical mechanisms but probably with the stress forcing contribution. The results also indicated that the horizontal and vertical scalar gradients (e. g., CO2) were modulated by these micro-circulations above and below the canopy, suggesting that estimates of advection using previous experimental approaches are not appropriate due to the tridimensional nature of the vertical and horizontal transport locally. This work also indicates that carbon budget from tower-based measurement is not enough to close the system, and one needs to include horizontal and vertical advection transport of CO2 into those estimates.
Resumo:
Abstract Background The study and analysis of gene expression measurements is the primary focus of functional genomics. Once expression data is available, biologists are faced with the task of extracting (new) knowledge associated to the underlying biological phenomenon. Most often, in order to perform this task, biologists execute a number of analysis activities on the available gene expression dataset rather than a single analysis activity. The integration of heteregeneous tools and data sources to create an integrated analysis environment represents a challenging and error-prone task. Semantic integration enables the assignment of unambiguous meanings to data shared among different applications in an integrated environment, allowing the exchange of data in a semantically consistent and meaningful way. This work aims at developing an ontology-based methodology for the semantic integration of gene expression analysis tools and data sources. The proposed methodology relies on software connectors to support not only the access to heterogeneous data sources but also the definition of transformation rules on exchanged data. Results We have studied the different challenges involved in the integration of computer systems and the role software connectors play in this task. We have also studied a number of gene expression technologies, analysis tools and related ontologies in order to devise basic integration scenarios and propose a reference ontology for the gene expression domain. Then, we have defined a number of activities and associated guidelines to prescribe how the development of connectors should be carried out. Finally, we have applied the proposed methodology in the construction of three different integration scenarios involving the use of different tools for the analysis of different types of gene expression data. Conclusions The proposed methodology facilitates the development of connectors capable of semantically integrating different gene expression analysis tools and data sources. The methodology can be used in the development of connectors supporting both simple and nontrivial processing requirements, thus assuring accurate data exchange and information interpretation from exchanged data.
Resumo:
Homing endonucleases are rare-cutting enzymes that cleave DNA at a site near their own location, preferentially in alleles lacking the homing endonuclease gene (HEG). By cleaving HEG-less alleles the homing endonuclease can mediate the transfer of its own gene to the cleaved site via a process called homing, involving double strand break repair. Via homing, HEGs are efficiently transferred into new genomes when horizontal exchange of DNA occurs between organisms. Group I introns are intervening sequences that can catalyse their own excision from the unprocessed transcript without the need of any proteins. They are widespread, occurring both in eukaryotes and prokaryotes and in their viruses. Many group I introns encode a HEG within them that confers mobility also to the intron and mediates the combined transfer of the intron/HEG to intronless alleles via homing. Bacteriophage T4 contains three such group I introns and at least 12 freestanding HEGs in its genome. The majority of phages besides T4 do not contain any introns, and freestanding HEGs are also scarcely represented among other phages. In the first paper we looked into why group I introns are so rare in phages related to T4 in spite of the fact that they can spread between phages via homing. We have identified the first phage besides T4 that contains all three T-even introns and also shown that homing of at least one of the introns has occurred recently between some of the phages in Nature. We also show that intron homing can be highly efficient between related phages if two phages infect the same bacterium but that there also exists counteracting mechanisms that can restrict the spread of introns between phages. In the second paper we have looked at how the presence of introns can affect gene expression in the phage. We find that the efficiency of splicing can be affected by variation of translation of the upstream exon for all three introns in T4. Furthermore, we find that splicing is also compromised upon infection of stationary-phase bacteria. This is the first time that the efficiency of self-splicing of group I introns has been coupled to environmental conditions and the potential effect of this on phage viability is discussed. In the third paper we have characterised two novel freestanding homing endonucleases that in some T-even-like phages replace two of the putative HEGs in T4. We also present a new theory on why it is a selective advantage for freestanding, phage homing endonucleases to cleave both HEG-containing and HEG-less genomes.