992 resultados para High areal mass density


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Introduction: Some studies suggest that high body mass index (BMI) confers survival advantage in dialysis patients, but BMI does not differentiate muscle from fat mass, and the survival advantage conferred by its increase seems to be limited to patients with high muscle mass. Thus, discriminating body components when evaluating nutritional status and survival is highly important. This study evaluated the influence of nutritional parameters on survival in patients on chronic dialysis. Subjects and methods: Anthropometry, bioimpedance, biochemistry, and dietary recall were used to investigate the influence of nutritional parameters on survival in 79 prevalent patients on chronic dialysis. Results: Protein intake <1.2 g/kg/day and creatinine <9.7 mg/dL were independent predictors of mortality in all patients. Regarding dialysis method, protein intake <1.2 g/kg/ day was predictive of mortality among hemodialysis patients, and percent standard mid-arm muscle circumference <80% was identified as a risk factor among peritoneal dialysis patients. Conclusion: Higher muscle mass, possibly favored by a higher protein intake, conferred survival advantage in dialysis patients.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Dynamic light scattering measurements have been made to elucidate changes in the coil conformation of a high molecular weight poly(ethylene oxide) (PEG) fraction when the non-ionic surfactant C(12)E(5) is present in dilute solutions. The measurements were made at 20 degrees C as functions of(a) the C(12)E(5) concentration at constant PEO concentration, (b) the PEO concentration at constant C(12)E(5) concentration, and (c) the C(12)E(5)/PEO concentration ratio. The influence of temperature on the interactions in terms of the relaxation time distributions was also examined up to the cloud point. It was found that when the C(12)E(5)/PEO weight ratio was >2 and when the temperature was >14 degrees C, the correlation functions became bimodal with well-separated components. The fast mode derives fi om individual surfactant micelles which are present in the solution at high number density. The appearance of the slow mode, which dominates the scattering, is interpreted as resulting from the formation of micellar clusters due to an excluded-volume effect when the high molar mass (M = 6 x 10(5)) PEO is added to the surfactant solution. It is shown that the micellar clusters form within the PEO coils and lead to a progressive swelling of the latter for steric reasons. The dimensions of the PEO/C(12)E(5) complex increase with increasing surfactant concentration to a value of R(H) approximate to 94 nm (R(g) approximate to 208 nm) at C-C12E5 = 3.5%. Fluorescence quenching measurements show that the average aggregation number of C(12)E(5) increases significantly on addition of the high molar mass PEG. With increasing temperature toward the cloud point the clusters increase in number density and/or become larger. The cloud point is substantially lower than that for C12E5 in water solution and is strongly dependent on the PEO concentration.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Indium doped ZnO films were deposited by the pyrosol process on glass substrates at different temperatures from solutions containing In/Zn molar ratios up to 10%. The nanostructure of the films was investigated using grazing-incidence small angle X-ray scattering (GISAXS). The mass density was determined by X-ray reflectivity and the composition by X-ray photoelectron spectroscopy. The GISAXS measurements revealed an anisotropic pattern for films deposited at 573 and 623 K and a isotropic one for those deposited at higher temperatures. The anisotropic patterns indicate the presence of elongated nanopores with their long axes perpendicular to the film surface. In contrast, the isotropic nature of GISAXS patterns of films grown at high temperatures (673 and 723 K) suggests the presence of spherical voids. The pore size distribution function determined from the isotropic patterns indicates a multimodal size distribution. on the other hand, the measured mass density of the doped films with isotropic nanotexture is higher than that of the anisotropic films while the electric resistivity is significantly lower. This is in agreement with the detected strong reduction of the void density and specific surface area at approximately constant pore size.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The increased demand for juvenile tambaqui Colossoma macropomum for grow-out ponds and stocking programs in the Amazon state of Brazil has increased the transportation of this species. This study was designed to determine the optimum density of juvenile tambaqui during transportation in closed containers. Fish (51.9 ± 3.3 g and 14.9 ± 0.4 cm) were packed in sealed plastic bags and transported for 10 h at four densities: 78, 156, 234, and 312 kg/m3. After transportation, fish from each density were kept in separate 500-L tanks for 96 h. Mortality, 96-h cumulative mortality, water quality, and blood parameters (hematocrit, plasma cortisol, and glucose) were monitored. Fish mortality after transportation was significantly lower at densities of 78 and 156 kg/m3 than at 234 and 312 kg/m3. Cumulative mortality was significantly lower at a density of 78 kg/m3. Dissolved oxygen after 10 h of transportation remained high at a density of 78 kg/m3, but reached critically low values at all other densities. Ammonia concentration was highest at the lowest density and was lower at higher densities. Carbon dioxide concentration was lowest at the density of 78 kg/m3 but higher in the other treatments. Plasma glucose and cortisol increased significantly immediately after transportation at densities of 156, 234, and 312 kg/m3, returning to control values by 24 h. The best density for juvenile tambaqui during a 10-h transportation haul in a closed container was 78 kg/m3. At this density there was no fish mortality, water quality was kept within acceptable values, and fish were not stressed.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Heutzutage gewähren hochpräzise Massenmessungen mit Penning-Fallen tiefe Einblicke in die fundamentalen Eigenschaften der Kernmaterie. Zu diesem Zweck wird die freie Zyklotronfrequenz eines Ions bestimmt, das in einem starken, homogenen Magnetfeld gespeichert ist. Am ISOLTRAP-Massenspektrometer an ISOLDE / CERN können die Massen von kurzlebigen, radioaktiven Nukliden mit Halbwertszeiten bis zu einigen zehn ms mit einer Unsicherheit in der Größenordnung von 10^-8 bestimmt werden. ISOLTRAP besteht aus einem Radiofrequenz-Quadrupol zum akkumulieren der von ISOLDE gelieferten Ionen, sowie zwei Penning-Fallen zum säubern und zur Massenbestimmung der Ionen. Innerhalb dieser Arbeit wurden die Massen von neutronenreichen Xenon- und Radonisotopen (138-146Xe und 223-229Rn) gemessen. Für elf davon wurde zum ersten Mal die Masse direkt bestimmt; 229Rn wurde im Zuge dieses Experimentes sogar erstmalig beobachtet und seine Halbwertszeit konnte zu ungefähr 12 s bestimmt werden. Da die Masse eines Nuklids alle Wechselwirkungen innerhalb des Kerns widerspiegelt, ist sie einzigartig für jedes Nuklid. Eine dieser Wechselwirkungen, die Wechselwirkung zwischen Protonen und Neutronen, führt zum Beispiel zu Deformationen. Das Ziel dieser Arbeit ist eine Verbindung zwischen kollektiven Effekten, wie Deformationen und Doppeldifferenzen von Bindungsenergien, sogenannten deltaVpn-Werten zu finden. Insbesondere in den hier untersuchten Regionen zeigen deltaVpn-Werte ein sehr ungewöhnliches Verhalten, das sich nicht mit einfachen Argumenten deuten lässt. Eine Erklärung könnte das Auftreten von Oktupoldeformationen in diesen Gebieten sein. Nichtsdestotrotz ist eine quantitative Beschreibung von deltaVpn-Werten, die den Effekt von solchen Deformationen berücksichtigt mit modernen Theorien noch nicht möglich.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In der vorliegenden Arbeit wurden Miniemulsionen als räumliche Begrenzungen für die Synthese von unterschiedlichen funktionellen Materialien mit neuartigen Eigenschaften verwendet. Das erste Themengebiet umfasst die Herstellung von Polymer/Calciumphosphat-Hybridpartikeln und –Hybridkapseln über die templatgesteuerte Mineralisation von Calciumphosphat. Die funktionalisierte Oberfläche von Polymernanopartikeln, welche über die Miniemulsionspolymerisation hergestellt wurden, diente als Templat für die Kristallisation von Calciumphosphat auf den Partikeln. Der Einfluss der funktionellen Carboxylat- und Phosphonat-Oberflächengruppen auf die Komplexierung von Calcium-Ionen sowie die Mineralisation von Calciumphosphat auf der Oberfläche der Nanopartikel wurde mit mehreren Methoden (ionenselektive Elektroden, REM, TEM und XRD) detailliert analysiert. Es wurde herausgefunden, dass die Mineralisation bei verschiedenen pH-Werten zu vollkommen unterschiedlichen Kristallmorphologien (nadel- und plättchenförmige Kristalle) auf der Oberfläche der Partikel führt. Untersuchungen der Mineralisationskinetik zeigten, dass die Morphologie der Hydroxylapatit-Kristalle auf der Partikeloberfläche mit der Änderung der Kristallisationsgeschwindigkeit durch eine sorgfältige Wahl des pH-Wertes gezielt kontrolliert werden kann. Sowohl die Eigenschaften der als Templat verwendeten Polymernanopartikel (z. B. Größe, Form und Funktionalisierung), als auch die Oberflächentopografie der entstandenen Polymer/Calciumphosphat-Hybridpartikel wurden gezielt verändert, um die Eigenschaften der erhaltenen Kompositmaterialien zu steuern. rnEine ähnliche bio-inspirierte Methode wurde zur in situ-Herstellung von organisch/anorganischen Nanokapseln entwickelt. Hierbei wurde die flexible Grenzfläche von flüssigen Miniemulsionströpfchen zur Mineralisation von Calciumphosphat an der Grenzfläche eingesetzt, um Gelatine/Calciumphosphat-Hybridkapseln mit flüssigem Kern herzustellen. Der flüssige Kern der Nanokapseln ermöglicht dabei die Verkapselung unterschiedlicher hydrophiler Substanzen, was in dieser Arbeit durch die erfolgreiche Verkapselung sehr kleiner Hydroxylapatit-Kristalle sowie eines Fluoreszenzfarbstoffes (Rhodamin 6G) demonstriert wurde. Aufgrund der intrinsischen Eigenschaften der Gelatine/Calciumphosphat-Kapseln konnten abhängig vom pH-Wert der Umgebung unterschiedliche Mengen des verkapselten Fluoreszenzfarbstoffes aus den Kapseln freigesetzt werden. Eine mögliche Anwendung der Polymer/Calciumphosphat-Partikel und –Kapseln ist die Implantatbeschichtung, wobei diese als Bindeglied zwischen künstlichem Implantat und natürlichem Knochengewebe dienen. rnIm zweiten Themengebiet dieser Arbeit wurde die Grenzfläche von Nanometer-großen Miniemulsionströpfchen eingesetzt, um einzelne in der dispersen Phase gelöste Polymerketten zu separieren. Nach der Verdampfung des in den Tröpfchen vorhandenen Lösungsmittels wurden stabile Dispersionen sehr kleiner Polymer-Nanopartikel (<10 nm Durchmesser) erhalten, die aus nur wenigen oder einer einzigen Polymerkette bestehen. Die kolloidale Stabilität der Partikel nach der Synthese, gewährleistet durch die Anwesenheit von SDS in der wässrigen Phase der Dispersionen, ist vorteilhaft für die anschließende Charakterisierung der Polymer-Nanopartikel. Die Partikelgröße der Nanopartikel wurde mittels DLS und TEM bestimmt und mit Hilfe der Dichte und des Molekulargewichts der verwendeten Polymere die Anzahl an Polymerketten pro Partikel bestimmt. Wie es für Partikel, die aus nur einer Polymerkette bestehen, erwartet wird, stieg die mittels DLS bestimmte Partikelgröße mit steigendem Molekulargewicht des in der Synthese der Partikel eingesetzten Polymers deutlich an. Die Quantifizierung der Kettenzahl pro Partikel mit Hilfe von Fluoreszenzanisotropie-Messungen ergab, dass Polymer-Einzelkettenpartikel hoher Einheitlichkeit hergestellt wurden. Durch die Verwendung eines Hochdruckhomogenisators zur Herstellung der Einzelkettendispersionen war es möglich, größere Mengen der Einzelkettenpartikel herzustellen, deren Materialeigenschaften zurzeit näher untersucht werden.rn

Relevância:

100.00% 100.00%

Publicador:

Resumo:

With recent advances in mass spectrometry techniques, it is now possible to investigate proteins over a wide range of molecular weights in small biological specimens. This advance has generated data-analytic challenges in proteomics, similar to those created by microarray technologies in genetics, namely, discovery of "signature" protein profiles specific to each pathologic state (e.g., normal vs. cancer) or differential profiles between experimental conditions (e.g., treated by a drug of interest vs. untreated) from high-dimensional data. We propose a data analytic strategy for discovering protein biomarkers based on such high-dimensional mass-spectrometry data. A real biomarker-discovery project on prostate cancer is taken as a concrete example throughout the paper: the project aims to identify proteins in serum that distinguish cancer, benign hyperplasia, and normal states of prostate using the Surface Enhanced Laser Desorption/Ionization (SELDI) technology, a recently developed mass spectrometry technique. Our data analytic strategy takes properties of the SELDI mass-spectrometer into account: the SELDI output of a specimen contains about 48,000 (x, y) points where x is the protein mass divided by the number of charges introduced by ionization and y is the protein intensity of the corresponding mass per charge value, x, in that specimen. Given high coefficients of variation and other characteristics of protein intensity measures (y values), we reduce the measures of protein intensities to a set of binary variables that indicate peaks in the y-axis direction in the nearest neighborhoods of each mass per charge point in the x-axis direction. We then account for a shifting (measurement error) problem of the x-axis in SELDI output. After these pre-analysis processing of data, we combine the binary predictors to generate classification rules for cancer, benign hyperplasia, and normal states of prostate. Our approach is to apply the boosting algorithm to select binary predictors and construct a summary classifier. We empirically evaluate sensitivity and specificity of the resulting summary classifiers with a test dataset that is independent from the training dataset used to construct the summary classifiers. The proposed method performed nearly perfectly in distinguishing cancer and benign hyperplasia from normal. In the classification of cancer vs. benign hyperplasia, however, an appreciable proportion of the benign specimens were classified incorrectly as cancer. We discuss practical issues associated with our proposed approach to the analysis of SELDI output and its application in cancer biomarker discovery.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

AIM: Peptide receptor radionuclide therapy using the somatostatin analogue [(177)Lu-DOTA(0),Tyr(3)]octreotate is a convincing treatment modality for metastasized neuroendocrine tumors. Therapeutic doses are administered in 4 cycles with 6-10 week intervals. A high somatostatin receptor density on tumor cells is a prerequisite at every administration to enable effective therapy. In this study, the density of the somatostatin receptor subtype 2 (sst2) was investigated in the rat CA20948 pancreatic tumor model after low dose [(177)Lu-DOTA(0), Tyr(3)]octreotate administration resulting in approximately 20 Gy tumor radiation absorbed dose, whereas 60 Gy is needed to induce complete tumor regression in these and the majority of tumors. METHODS: Sixteen days after inoculation of the CA20948 tumor, male Lewis rats were injected with 185 MBq [(177)Lu-DOTA(0),Tyr(3)]octreotate to initiate a decline in tumor size. Approximately 40 days after injection, tumors re-grew progressively after initial response. Quantification of sst2 expression was performed using in vitro autoradiography on frozen sections of three groups: control (not-treated) tumors, tumors in regression and tumors in re-growth. Histology and proliferation were determined using HE- and anti-Ki-67-staining. RESULTS: The sst2 expression on CA20948 tumor cells decreased significantly after therapy to 5% of control level. However, tumors escaping from therapy showed an up-regulated sst2 level of 2-5 times higher sst2 density compared to control tumors. CONCLUSION: After a suboptimal therapeutic dose of [(177)Lu-DOTA(0),Tyr(3)]octreotate, escape of tumors is likely to occur. Since these cells show an up-regulated sst2 receptor density, a next therapeutic administration of radiolabelled sst2 analogue can be expected to be highly effective.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Hall thrusters have been under active development around the world since the 1960’s. Thrusters using traditional propellants such as xenon have been flown on a variety of satellite orbit raising and maintenance missions with an excellent record. To expand the mission envelope, it is necessary to lower the specific impulse of the thrusters but xenon and krypton are poor performers at specific impulses below 1,200 seconds. To enhance low specific impulse performance, this dissertation examines the development of a Hall-effect thruster which uses bismuth as a propellant. Bismuth, the heaviest non-radioactive element, holds many advantages over noble gas propellants from an energetics as well as a practical economic standpoint. Low ionization energy, large electron-impact crosssection and high atomic mass make bismuth ideal for low-specific impulse applications. The primary disadvantage lies in the high temperatures which are required to generate the bismuth vapors. Previous efforts carried out in the Soviet Union relied upon the complete bismuth vaporization and gas phase delivery to the anode. While this proved successful, the power required to vaporize and maintain gas phase throughout the mass flow system quickly removed many of the efficiency gains expected from using bismuth. To solve these problems, a unique method of delivering liquid bismuth to the anode has been developed. Bismuth is contained within a hollow anode reservoir that is capped by a porous metallic disc. By utilizing the inherent waste heat generated in a Hall thruster, liquid bismuth is evaporated and the vapors pass through the porous disc into the discharge chamber. Due to the high temperatures and material compatibility requirements, the anode was fabricated out of pure molybdenum. The porous vaporizer was not available commercially so a method of creating a refractory porous plate with 40-50% open porosity was developed. Molybdenum also does not respond well to most forms of welding so a diffusion bonding process was also developed to join the molybdenum porous disc to the molybdenum anode. Operation of the direct evaporation bismuth Hall thruster revealed interesting phenomenon. By utilizing constant current mode on a discharge power supply, the discharge voltage settles out to a stable operating point which is a function of discharge current, anode face area and average pore size on the vaporizer. Oscillations with a 40 second period were also observed. Preliminary performance data suggests that the direct evaporation bismuth Hall thruster performs similar to xenon and krypton Hall thrusters. Plume interrogation with a Retarding Potential Analyzer confirmed that bismuth ions were being efficiently accelerated while Faraday probe data gave a view of the ion density in the exhausted plume.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

PLATO 2.0 has recently been selected for ESA’s M3 launch opportunity (2022/24). Providing accurate key planet parameters (radius, mass, density and age) in statistical numbers, it addresses fundamental questions such as: How do planetary systems form and evolve? Are there other systems with planets like ours, including potentially habitable planets? The PLATO 2.0 instrument consists of 34 small aperture telescopes (32 with 25 s readout cadence and 2 with 2.5 s candence) providing a wide field-of-view (2232 deg 2) and a large photometric magnitude range (4–16 mag). It focusses on bright (4–11 mag) stars in wide fields to detect and characterize planets down to Earth-size by photometric transits, whose masses can then be determined by ground-based radial-velocity follow-up measurements. Asteroseismology will be performed for these bright stars to obtain highly accurate stellar parameters, including masses and ages. The combination of bright targets and asteroseismology results in high accuracy for the bulk planet parameters: 2 %, 4–10 % and 10 % for planet radii, masses and ages, respectively. The planned baseline observing strategy includes two long pointings (2–3 years) to detect and bulk characterize planets reaching into the habitable zone (HZ) of solar-like stars and an additional step-and-stare phase to cover in total about 50 % of the sky. PLATO 2.0 will observe up to 1,000,000 stars and detect and characterize hundreds of small planets, and thousands of planets in the Neptune to gas giant regime out to the HZ. It will therefore provide the first large-scale catalogue of bulk characterized planets with accurate radii, masses, mean densities and ages. This catalogue will include terrestrial planets at intermediate orbital distances, where surface temperatures are moderate. Coverage of this parameter range with statistical numbers of bulk characterized planets is unique to PLATO 2.0. The PLATO 2.0 catalogue allows us to e.g.: - complete our knowledge of planet diversity for low-mass objects, - correlate the planet mean density-orbital distance distribution with predictions from planet formation theories,- constrain the influence of planet migration and scattering on the architecture of multiple systems, and - specify how planet and system parameters change with host star characteristics, such as type, metallicity and age. The catalogue will allow us to study planets and planetary systems at different evolutionary phases. It will further provide a census for small, low-mass planets. This will serve to identify objects which retained their primordial hydrogen atmosphere and in general the typical characteristics of planets in such low-mass, low-density range. Planets detected by PLATO 2.0 will orbit bright stars and many of them will be targets for future atmosphere spectroscopy exploring their atmosphere. Furthermore, the mission has the potential to detect exomoons, planetary rings, binary and Trojan planets. The planetary science possible with PLATO 2.0 is complemented by its impact on stellar and galactic science via asteroseismology as well as light curves of all kinds of variable stars, together with observations of stellar clusters of different ages. This will allow us to improve stellar models and study stellar activity. A large number of well-known ages from red giant stars will probe the structure and evolution of our Galaxy. Asteroseismic ages of bright stars for different phases of stellar evolution allow calibrating stellar age-rotation relationships. Together with the results of ESA’s Gaia mission, the results of PLATO 2.0 will provide a huge legacy to planetary, stellar and galactic science.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The experiment was designed to investigate the impact of selection for increased body mass on external and internal egg quality traits of Japanese quail. Three hundred and sixty Japanese quail, divergently selected over three generations for different body mass at 4 weeks of age, were used. Quail were homogeneously divided into three groups each consisting of 120 birds: high body mass (HBM), low body mass (LBM) and Control. ANOVA was used to detect the effect of selection on egg quality. In addition, correlation between external and internal egg quality traits was measured. Our results revealed thatHBMquail laid heavier eggs (P = 0.03 compared with LBM but not significantly different with Control quail) with a higher external (shell thickness, shell weight, eggshell ratio and eggshell density, P = 0.0001) and internal egg quality score (albumen weight, P = 0.003; albumen ratio, P = 0.01; albumen height, yolk height, yolk index and Haugh unit, P = 0.0001) when compared with both the Control and LBM. The egg surface area and yolk diameter were significantly higher in HBM when compared with the LBM but not with the Control line. Egg weight was positively correlated with albumen weight (r = 0.54, P = 0.0001), albumen ratio (r = 0.14, P = 0.05), yolk height (r = 0.27, P = 0.0001), yolk weight (r = 0.23, P = 0.002), yolk diameter (r = 0.14, P = 0.05) and yolk index (r = 0.21, P = 0.005) but was negatively correlated with yolk ratio (r = –0.16, P = 0.03). Our results indicate that selection for higher body mass might result in heavier eggs and superior egg quality.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The cruise with RV Tydeman was devoted to study permanently stratified plankton systems in the (sub)tropical ocean, which are characterised by a deep chlorophyll peak between 80 and 150 m. To minimise lateral effects by horizontal transport of nutrients and organic matter from river outflow and upwelling regions, stations were selected in the middle of the North Atlantic Ocean between the continents of America and Africa. (5 - 35° N and 50 - 15° W). Here the vertical distributions of light and nutrients control the abundance and growth of autotrophic algae in the thermically stratified water column. This phytoplankton is numerically dominated by the prokaryotic picoplankters Synechococcus spp. and Prochlorococcus spp., which are smaller than 2 ?m. The productivity of the 100 to 150 m deep euphotic zone can be high, because a high heterotrophic/autotrophic biomass ratio induces a rapid regeneration of nutrients and inorganic carbon. Primary grazers are mainly micro-organisms such as heterotrophic nannoflagellates and ciliates, which feed on the small algae and on bacteria. Heterotrophic bacteria can outnumber the autotrophic algae, because their number is related to the substrate pools of dissolved and particulate dead organic matter. These DOC and detritus pools reach equilibrium at a concentration, where the rate of their production (proportional to algal biomass) equals their mineralisation and sinking rate (proportional to the concentration and weight of POC and detritus). At a relatively low value of the weight-specific loss rates, the equilibrium concentration of these carbon pools and their load of bacteria can be high. The bacterial productivity is proportional to the mineralisation rate, which in a steady state can never be higher than the rate of primary production. Hence the ratio in turnover rate of bacteria and autotrophs tends to be reciprocally proportional to their biomass ratio.