502 resultados para Heuristics.
Resumo:
In this paper, we propose two active learning algorithms for semiautomatic definition of training samples in remote sensing image classification. Based on predefined heuristics, the classifier ranks the unlabeled pixels and automatically chooses those that are considered the most valuable for its improvement. Once the pixels have been selected, the analyst labels them manually and the process is iterated. Starting with a small and nonoptimal training set, the model itself builds the optimal set of samples which minimizes the classification error. We have applied the proposed algorithms to a variety of remote sensing data, including very high resolution and hyperspectral images, using support vector machines. Experimental results confirm the consistency of the methods. The required number of training samples can be reduced to 10% using the methods proposed, reaching the same level of accuracy as larger data sets. A comparison with a state-of-the-art active learning method, margin sampling, is provided, highlighting advantages of the methods proposed. The effect of spatial resolution and separability of the classes on the quality of the selection of pixels is also discussed.
Resumo:
It has been repeatedly debated which strategies people rely on in inference. These debates have been difficult to resolve, partially because hypotheses about the decision processes assumed by these strategies have typically been formulated qualitatively, making it hard to test precise quantitative predictions about response times and other behavioral data. One way to increase the precision of strategies is to implement them in cognitive architectures such as ACT-R. Often, however, a given strategy can be implemented in several ways, with each implementation yielding different behavioral predictions. We present and report a study with an experimental paradigm that can help to identify the correct implementations of classic compensatory and non-compensatory strategies such as the take-the-best and tallying heuristics, and the weighted-linear model.
Resumo:
We introduce a width parameter that bounds the complexity of classical planning problems and domains, along with a simple but effective blind-search procedure that runs in time that is exponential in the problem width. We show that many benchmark domains have a bounded and small width provided thatgoals are restricted to single atoms, and hence that such problems are provably solvable in low polynomial time. We then focus on the practical value of these ideas over the existing benchmarks which feature conjunctive goals. We show that the blind-search procedure can be used for both serializing the goal into subgoals and for solving the resulting problems, resulting in a ‘blind’ planner that competes well with a best-first search planner guided by state-of-the-art heuristics. In addition, ideas like helpful actions and landmarks can be integrated as well, producing a planner with state-of-the-art performance.
Resumo:
Due to the advances in sensor networks and remote sensing technologies, the acquisition and storage rates of meteorological and climatological data increases every day and ask for novel and efficient processing algorithms. A fundamental problem of data analysis and modeling is the spatial prediction of meteorological variables in complex orography, which serves among others to extended climatological analyses, for the assimilation of data into numerical weather prediction models, for preparing inputs to hydrological models and for real time monitoring and short-term forecasting of weather.In this thesis, a new framework for spatial estimation is proposed by taking advantage of a class of algorithms emerging from the statistical learning theory. Nonparametric kernel-based methods for nonlinear data classification, regression and target detection, known as support vector machines (SVM), are adapted for mapping of meteorological variables in complex orography.With the advent of high resolution digital elevation models, the field of spatial prediction met new horizons. In fact, by exploiting image processing tools along with physical heuristics, an incredible number of terrain features which account for the topographic conditions at multiple spatial scales can be extracted. Such features are highly relevant for the mapping of meteorological variables because they control a considerable part of the spatial variability of meteorological fields in the complex Alpine orography. For instance, patterns of orographic rainfall, wind speed and cold air pools are known to be correlated with particular terrain forms, e.g. convex/concave surfaces and upwind sides of mountain slopes.Kernel-based methods are employed to learn the nonlinear statistical dependence which links the multidimensional space of geographical and topographic explanatory variables to the variable of interest, that is the wind speed as measured at the weather stations or the occurrence of orographic rainfall patterns as extracted from sequences of radar images. Compared to low dimensional models integrating only the geographical coordinates, the proposed framework opens a way to regionalize meteorological variables which are multidimensional in nature and rarely show spatial auto-correlation in the original space making the use of classical geostatistics tangled.The challenges which are explored during the thesis are manifolds. First, the complexity of models is optimized to impose appropriate smoothness properties and reduce the impact of noisy measurements. Secondly, a multiple kernel extension of SVM is considered to select the multiscale features which explain most of the spatial variability of wind speed. Then, SVM target detection methods are implemented to describe the orographic conditions which cause persistent and stationary rainfall patterns. Finally, the optimal splitting of the data is studied to estimate realistic performances and confidence intervals characterizing the uncertainty of predictions.The resulting maps of average wind speeds find applications within renewable resources assessment and opens a route to decrease the temporal scale of analysis to meet hydrological requirements. Furthermore, the maps depicting the susceptibility to orographic rainfall enhancement can be used to improve current radar-based quantitative precipitation estimation and forecasting systems and to generate stochastic ensembles of precipitation fields conditioned upon the orography.
Resumo:
In this paper, a hybrid simulation-based algorithm is proposed for the StochasticFlow Shop Problem. The main idea of the methodology is to transform the stochastic problem into a deterministic problem and then apply simulation to the latter. In order to achieve this goal, we rely on Monte Carlo Simulation and an adapted version of a deterministic heuristic. This approach aims to provide flexibility and simplicity due to the fact that it is not constrained by any previous assumption and relies in well-tested heuristics.
Resumo:
In this paper, a hybrid simulation-based algorithm is proposed for the StochasticFlow Shop Problem. The main idea of the methodology is to transform the stochastic problem into a deterministic problem and then apply simulation to the latter. In order to achieve this goal, we rely on Monte Carlo Simulation and an adapted version of a deterministic heuristic. This approach aims to provide flexibility and simplicity due to the fact that it is not constrained by any previous assumption and relies in well-tested heuristics.
Resumo:
Combinatorial optimization involves finding an optimal solution in a finite set of options; many everyday life problems are of this kind. However, the number of options grows exponentially with the size of the problem, such that an exhaustive search for the best solution is practically infeasible beyond a certain problem size. When efficient algorithms are not available, a practical approach to obtain an approximate solution to the problem at hand, is to start with an educated guess and gradually refine it until we have a good-enough solution. Roughly speaking, this is how local search heuristics work. These stochastic algorithms navigate the problem search space by iteratively turning the current solution into new candidate solutions, guiding the search towards better solutions. The search performance, therefore, depends on structural aspects of the search space, which in turn depend on the move operator being used to modify solutions. A common way to characterize the search space of a problem is through the study of its fitness landscape, a mathematical object comprising the space of all possible solutions, their value with respect to the optimization objective, and a relationship of neighborhood defined by the move operator. The landscape metaphor is used to explain the search dynamics as a sort of potential function. The concept is indeed similar to that of potential energy surfaces in physical chemistry. Borrowing ideas from that field, we propose to extend to combinatorial landscapes the notion of the inherent network formed by energy minima in energy landscapes. In our case, energy minima are the local optima of the combinatorial problem, and we explore several definitions for the network edges. At first, we perform an exhaustive sampling of local optima basins of attraction, and define weighted transitions between basins by accounting for all the possible ways of crossing the basins frontier via one random move. Then, we reduce the computational burden by only counting the chances of escaping a given basin via random kick moves that start at the local optimum. Finally, we approximate network edges from the search trajectory of simple search heuristics, mining the frequency and inter-arrival time with which the heuristic visits local optima. Through these methodologies, we build a weighted directed graph that provides a synthetic view of the whole landscape, and that we can characterize using the tools of complex networks science. We argue that the network characterization can advance our understanding of the structural and dynamical properties of hard combinatorial landscapes. We apply our approach to prototypical problems such as the Quadratic Assignment Problem, the NK model of rugged landscapes, and the Permutation Flow-shop Scheduling Problem. We show that some network metrics can differentiate problem classes, correlate with problem non-linearity, and predict problem hardness as measured from the performances of trajectory-based local search heuristics.
Resumo:
The World Wide Web, the world¿s largest resource for information, has evolved from organizing information using controlled, top-down taxonomies to a bottom up approach that emphasizes assigning meaning to data via mechanisms such as the Social Web (Web 2.0). Tagging adds meta-data, (weak semantics) to the content available on the web. This research investigates the potential for repurposing this layer of meta-data. We propose a multi-phase approach that exploits user-defined tags to identify and extract domain-level concepts. We operationalize this approach and assess its feasibility by application to a publicly available tag repository. The paper describes insights gained from implementing and applying the heuristics contained in the approach, as well as challenges and implications of repurposing tags for extraction of domain-level concepts.
Resumo:
En este trabajo se evalúan algoritmos heurísticos de exploración de entornos(AED, ANED, SA, TS, GA y GRASP) en la programación de pedidos en unamáquina de la vida real, con el objetivo de minimizar la suma de retrasos . Elcaso estudiado se diferencia de los problemas convencionales en que lostiempos de preparación de las operaciones están separados de los tiempos deprocesamiento y son dependientes de la secuencia. Los resultadoscomputacionales revelan que la Búsqueda Tabú funciona mejor que los otrosalgoritmos aplicados.
Resumo:
Sudoku problems are some of the most known and enjoyed pastimes, with a never diminishing popularity, but, for the last few years those problems have gone from an entertainment to an interesting research area, a twofold interesting area, in fact. On the one side Sudoku problems, being a variant of Gerechte Designs and Latin Squares, are being actively used for experimental design, as in [8, 44, 39, 9]. On the other hand, Sudoku problems, as simple as they seem, are really hard structured combinatorial search problems, and thanks to their characteristics and behavior, they can be used as benchmark problems for refining and testing solving algorithms and approaches. Also, thanks to their high inner structure, their study can contribute more than studies of random problems to our goal of solving real-world problems and applications and understanding problem characteristics that make them hard to solve. In this work we use two techniques for solving and modeling Sudoku problems, namely, Constraint Satisfaction Problem (CSP) and Satisfiability Problem (SAT) approaches. To this effect we define the Generalized Sudoku Problem (GSP), where regions can be of rectangular shape, problems can be of any order, and solution existence is not guaranteed. With respect to the worst-case complexity, we prove that GSP with block regions of m rows and n columns with m = n is NP-complete. For studying the empirical hardness of GSP, we define a series of instance generators, that differ in the balancing level they guarantee between the constraints of the problem, by finely controlling how the holes are distributed in the cells of the GSP. Experimentally, we show that the more balanced are the constraints, the higher the complexity of solving the GSP instances, and that GSP is harder than the Quasigroup Completion Problem (QCP), a problem generalized by GSP. Finally, we provide a study of the correlation between backbone variables – variables with the same value in all the solutions of an instance– and hardness of GSP.
Resumo:
We present a new branch and bound algorithm for weighted Max-SAT, called Lazy which incorporates original data structures and inference rules, as well as a lower bound of better quality. We provide experimental evidence that our solver is very competitive and outperforms some of the best performing Max-SAT and weighted Max-SAT solvers on a wide range of instances.
Resumo:
Recently, edge matching puzzles, an NP-complete problem, have received, thanks to money-prized contests, considerable attention from wide audiences. We consider these competitions not only a challenge for SAT/CSP solving techniques but also as an opportunity to showcase the advances in the SAT/CSP community to a general audience. This paper studies the NP-complete problem of edge matching puzzles focusing on providing generation models of problem instances of variable hardness and on its resolution through the application of SAT and CSP techniques. From the generation side, we also identify the phase transition phenomena for each model. As solving methods, we employ both; SAT solvers through the translation to a SAT formula, and two ad-hoc CSP solvers we have developed, with different levels of consistency, employing several generic and specialized heuristics. Finally, we conducted an extensive experimental investigation to identify the hardest generation models and the best performing solving techniques.
Resumo:
Recently, edge matching puzzles, an NP-complete problem, have rececived, thanks to money-prized contests, considerable attention from wide audiences. We consider these competitions not only a challenge for SAT/CSP solving techniques but also as an opportunity to showcase the advances in the SAT/CSP community to a general audience. This paper studies the NP-complete problem of edge matching puzzles focusing on providing generation models of problem instances of variable hardness and on its resolution through the application of SAT and CSP techniques. From the generation side, we also identify the phase transition phenomena for each model. As solving methods, we employ both; SAT solvers through the translation to a SAT formula, and two ad-hoc CSP solvers we have developed, with different levels of consistency, employing several generic and specialized heuristics. Finally, we conducted an extensive experimental investigation to identify the hardest generation models and the best performing solving techniques.