959 resultados para Hepatic progenitor cells


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Dissertação de Mestrado, Engenharia Biológica, Faculdade de Ciências e Tecnologia, Universidade do Algarve, 2014

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Stem cell transplantation holds great promise for the treatment of myocardial infarction injury. We recently described the embryonic stem cell-derived cardiac progenitor cells (CPCs) capable of differentiating into cardiomyocytes, vascular endothelium, and smooth muscle. In this study, we hypothesized that transplanted CPCs will preserve function of the infarcted heart by participating in both muscle replacement and neovascularization. Differentiated CPCs formed functional electromechanical junctions with cardiomyocytes in vitro and conducted action potentials over cm-scale distances. When transplanted into infarcted mouse hearts, CPCs engrafted long-term in the infarct zone and surrounding myocardium without causing teratomas or arrhythmias. The grafted cells differentiated into cross-striated cardiomyocytes forming gap junctions with the host cells, while also contributing to neovascularization. Serial echocardiography and pressure-volume catheterization demonstrated attenuated ventricular dilatation and preserved left ventricular fractional shortening, systolic and diastolic function. Our results demonstrate that CPCs can engraft, differentiate, and preserve the functional output of the infarcted heart.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The prevalence of fatty liver is rising in association with the global increase in obesity and type 2 diabetes. In the past, simple steatosis was regarded as benign, but the presence of another liver disease may provide a synergistic combination of steatosis, cellular adaptation, and oxidative damage that aggravates liver injury. In this review, a major focus is on the role of steatosis as a co-factor in chronic hepatitis C (HCV), where the mechanisms promoting fibrosis and the effect of weight reduction in minimizing liver injury have been most widely studied. Steatosis, obesity, and associated metabolic factors may also modulate the response to alcohol- and drug-induced liver disease and may be risk factors for the development of hepatocellular cancer. The pathogenesis of injury in obesity-related fatty liver disease involves a number of pathways, which are currently under investigation. Enhanced oxidative stress, increased susceptibility to apoptosis, and a dysregulated response to cellular injury have been implicated, and other components of the metabolic syndrome such as hyperinsulinernia and hyperglycemia are likely to have a role. Fibrosis also may be increased as a by-product of altered hepatocyte regeneration and activation of bipotential hepatic progenitor cells. In conclusion, active management of obesity and a reduction in steatosis may improve liver injury and decrease the progression of fibrosis.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Objective. The relationship of multipotent mesenchymal stromal cells (MSC) with pericytes and fibroblasts has not been established thus far, although they share many markers of primitive marrow stromal cells and the osteogenic, adipogenic, and chondrogenic differentiation potentials. Materials and Methods. We compared MSCs from adult or fetal tissues, MSC differentiated in vitro, fibroblasts and cultures of retinal pericytes obtained either by separation with anti-CD146 or adhesion. The characterizations included morphological, immunophenotypic, gene-expression profile, and differentiation potential. Results. Osteogenic, adipocytic, and chondrocytic differentiation was demonstrated for MSC, retinal perivascular cells, and fibroblasts. Cell morphology and the phenotypes defined by 22 markers were very similar. Analysis of the global gene expression obtained by serial analysis of gene expression for 17 libraries and by reverse transcription polymerase chain reaction of 39 selected genes from 31 different cell cultures, revealed similarities among MSC, retinal perivascular cells, and hepatic stellate cells. Despite this overall similarity, there was a heterogeneous expression of genes related to angiogenesis, in MSC derived from veins, artery, perivascular cells, and fibroblasts. Evaluation of typical pericyte and MSC transcripts, such as NG2, CD146, CD271, and CD140B on CD146 selected perivascular cells and MSC by real-time polymerase chain reaction confirm the relationship between these two cell types. Furthermore, the inverse correlation between fibroblast-specific protein-1 and CD146 transcripts observed on pericytes, MSC, and fibroblasts highlight their potential use as markers of this differentiation pathway. Conclusion. Our results indicate that human MSC and pericytes are similar cells located in the wall of the vasculature, where they function as cell sources for repair and tissue maintenance, whereas fibroblasts are more differentiated cells with more restricted differentiation potential. (C) 2008 ISEH - Society for Hematology and Stem Cells. Published by Elsevier Inc.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Transforming growth factor-β1 (TGF-β1) plays an important role in the fibrogenic process in the liver. The aim of the present study was to explore the action of TGF-β1 on fibronectin expression in rat hepatic stem-like cells and the underlying mechanisms. The level of fibronectin expression was determined in hepatic stem-like cells (WB cells) before and after TGF-β1 stimulation by RT-PCR and Western blot methods. Using immunogold transmission electron microscopy and the Western blot method, we observed the result of the expression and the distribution of cAMP, phosphorylated Smad3 and Smad7 before and after TGF-β1 treatment. The levels of fibronectin expression in both mRNA and protein increased 4- to 5-fold after TGF-β1 stimulation, reaching an optimum level after 8 h and then gradually falling back. Similarly, TGF-β1 stimulation resulted in an increase of cAMP in WB cells, peaking at 8 h. After treatment with TGF-β1 for 24 h, the expression of cAMP gradually decreased. In addition, we found that TGF-β1 treatment also contributed to the increased expression and to changes in cellular distribution of phosphorylated Smad3 (translocation from the cytoplasm to the nucleus) and Smad7 (translocation from the nucleus to the cytoplasm) in WB cells. The present study demonstrates that TGF-β is involved in the fibrogenic process in hepatic stem cells through up-regulation of fibronectin expression, and the mechanisms underlying this process may be associated with the activation of cAMP and Smad pathways.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In this study, Chlorella vulgaris (CV) was examined for its chelating effects on the ability of bone marrow stromal cell layer to display myeloid progenitor cells in vitro in lead-exposed mice, using the long-term bone marrow culture (LTBMC). In addition, the levels of interleukin (IL)-6, an important hematopoietic stimulator, as well as the numbers of adherent and non-adherent cells were also investigated. Mice were gavage treated daily with a single 50 mg/kg dose of CV for 10 days, concomitant to continuous offering of 1300 ppm lead acetate in drinking water. We found that CV up-modulates the reduced ability of stromal cell layer to display myeloid progenitor cells in vitro in lead-exposed mice and restores both the reduced number of non-adherent cells and the ability of stromal cells from these mice to produce IL-6. Monitoring of lead poisoning demonstrated that CV treatment significantly reduced lead levels in blood and tissues, completely restored the normal hepatic ALA levels, decreased the abnormally high plasma ALA and partly recovered the liver capacity to produce porphyrins. These findings provide evidence for a beneficial use of CV for combination or alternative chelating therapy to protect the host from the damage induced by lead poisoning. (C) 2008 Elsevier Ltd. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The umbilical cord blood (UCB) is an important source of hematopoietic stem cells with great deal of interest in regenerative medicine. The UCB cells have been extensively studied as an alternative to the bone marrow transplants. The challenge is to define specific methods to purify and characterize these cells in different animal species. This study is aimed at morphological characterization of progenitor cells derived from UCB highlighting relevant differences with peripheral blood of adult in dog and cats. Therefore, blood was collected from 18 dogs and 5 cats' umbilical cords from fetus in various developmental stages. The mononuclear cells were separated using the gradient of density Histopaque-1077. Characterization of CD34+ cells was performed by flow cytometric analysis and transmission electron microscopy. Granulocytes (ancestry of the basophiles, eosinophiles, and neutrophiles) and agranulocytes (represented by immature lymphocytes) were identified. We showed for the first time the ultrastructural features of cat UCB cells. Microsc. Res. Tech. 75:766770, 2012. (C) 2011 Wiley Periodicals, Inc.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Blood supply is a critical issue in most tissue engineering approaches for large defect healing. As vessel ingrowth from surrounding tissues is proven to be insufficient, current strategies are focusing on the neo-vascularisation process. In the present study, we developed an in vitro pre-vascularised construct using 3D polyurethane (PU) scaffolds, based on the association of human Endothelial Progenitor Cells (EPC, CD34+ and CD133+) with human Mesenchymal Stem Cells (MSC). We showed the formation of luminal tubular structures in the co-seeded scaffolds as early as day 7 in culture. These tubular structures were proven positive for endothelial markers von Willebrand Factor and PECAM-1. Of special significance in our constructs is the presence of CD146-positive cells, as a part of the neovasculature scaffolding. These cells, coming from the mesenchymal stem cells population (MSC or EPC-depleted MSC), also expressed other markers of pericyte cells (NG2 and αSMA) that are known to play a pivotal function in the stabilisation of newly formed pre-vascular networks. In parallel, in co-cultures, osteogenic differentiation of MSCs occurred earlier when compared to MSCs monocultures, suggesting the close cooperation between the two cell populations. The presence of angiogenic factors (from autologous platelet lysates) in association with osteogenic factors seems to be crucial for both cell populations' cooperation. These results are promising for future clinical applications, as all components (cells, growth factors) can be prepared in an autologous way.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

A morphological and cell culture study from nasal mucosa of dogs was performed in order to establish a protocol to obtain a cell population committed to neuronal lineage, as a proposal for the treatment of traumatic and degenerative lesions in these animals, so that in the future these results could be applied to the human species. Twelve mongrel dogs of 60-day aged pregnancy were collected from urban pound dogs in São Paulo. Tissue from cribriform ethmoidal lamina of the fetuses was collected at necropsy under sterile conditions around 1h to 2h postmortem by uterine sections and sections from the fetal regions described above. Isolated cells of this tissue were added in DMEM/F-12 medium under standard conditions of incubation (5% CO², >37ºC). Cell culture based on isolated cells from biopsies of the olfactory epithelium showed rapid growth when cultured for 24 hours, showing phase-bright sphere cells found floating around the fragments, attached on culture flasks. After 20 days, a specific type of cells, predominantly ellipsoids or fusiform cells was characterized in vitro. The indirect immunofluorescence examination showed cells expressing markers of neuronal precursors (GFAP, neurofilament, oligodendrocyte, and III â-tubulin). The cell proliferation index showed Ki67 immunostaining with a trend to label cell groups throughout the apical region, while PCNA immunostaining label predominantly cell groups lying above the basal lamina. The transmission electron microscopy from the olfactory epithelium of dogs revealed cells with electron-dense cytoplasm and preserving the same distribution as those of positive cell staining for PCNA. Metabolic activity was confirmed by presence of euchromatin in the greatest part of cells. All these aspects give subsidies to support the hypothesis about resident progenitor cells among the basal cells of the olfactory epithelium, committed to renewal of these cell populations, especially neurons.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Background: The prostate stroma is a key mediator of epithelial differentiation and development, and potentially plays a role in the initiation and progression of prostate cancer. The tumor-associated stroma is marked by increased expression of CD90/THYI. Isolation and characterization of these stromal cells could provide valuable insight into the biology of the tumor microenvironment. Methods: Prostate CD90(+) stromal fibromuscular cells from tumor specimens were isolated by cell-sorting and analyzed by DNA microarray. Dataset analysis was used to compare gene expression between histologically normal and tumor-associated stromal cells. For comparison, stromal cells were also isolated and analyzed from the urinary bladder. Results: The tumor-associated stromal cells were found to have decreased expression of genes involved in smooth muscle differentiation, and those detected in prostate but not bladder. Other differential expression between the stromal cell types included that of the CXC-chemokine genes. Conclusion: CD90(+) prostate tumor-associated stromal cells differed from their normal counterpart in expression of multiple genes, some of which are potentially involved in organ development.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

As previously shown, higher levels of NOTCH1 and increased NF-kappa B signaling is a distinctive feature of the more primitive umbilical cord blood (UCB) CD34+ hematopoietic stem cells (HSCs), as compared to bone marrow ( BM). Differences between BM and UCB cell composition also account for this finding. The CD133 marker defines a more primitive cell subset among CD34+ HSC with a proposed hemangioblast potential. To further evaluate the molecular basis related to the more primitive characteristics of UCB and CD133+ HSC, immunomagnetically purified human CD34+ and CD133+ cells from BM and UCB were used on gene expression microarrays studies. UCB CD34+ cells contained a significantly higher proportion of CD133+ cells than BM (70% and 40%, respectively). Cluster analysis showed that BM CD133+ cells grouped with the UCB cells ( CD133+ and CD34+) rather than to BM CD34+ cells. Compared with CD34+ cells, CD133+ had a higher expression of many transcription factors (TFs). Promoter analysis on all these TF genes revealed a significantly higher frequency ( than expected by chance) of NF-kappa B-binding sites (BS), including potentially novel NF-kappa B targets such as RUNX1, GATA3, and USF1. Selected transcripts of TF related to primitive hematopoiesis and self-renewal, such as RUNX1, GATA3, USF1, TAL1, HOXA9, HOXB4, NOTCH1, RELB, and NFKB2 were evaluated by real-time PCR and were all significantly positively correlated. Taken together, our data indicate the existence of an interconnected transcriptional network characterized by higher levels of NOTCH1, NF-kappa B, and other important TFs on more primitive HSC sets.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Background: Culturing otospheres from dissociated organ of Corti is an appropriate starting point aiming at the development of cell therapy for hair cell loss. Although guinea pigs have been widely used as an excellent experimental model for studying the biology of the inner ear, the mouse cochlea has been more suitable for yielding otospheres in vitro. The aim of this study was to compare conditions and outcomes of otosphere suspension cultures from dissociated organ of Corti of either mouse or guinea pig at postnatal day three (P3), and to evaluate the guinea pig as a potential cochlea donor for preclinical cell therapy. Methods: Organs of Corti were surgically isolated from P3 guinea pig or mouse cochlea, dissociated and cultivated under non-adherent conditions. Cultures were maintained in serum-free DMEM:F12 medium, supplemented with epidermal growth factor (EGF) plus either basic fibroblast growth factor (bFGF) or transforming growth factor alpha (TGF alpha). Immunofluorescence assays were conducted for phenotype characterization. Results: The TGF alpha group presented a number of spheres significantly higher than the bFGF group. Although mouse cultures yielded more cells per sphere than guinea pig cultures, sox2 and nestin distributed similarly in otosphere cells from both organisms. We present evidence that otospheres retain properties of inner ear progenitor cells such as self-renewal, proliferation, and differentiation into hair cells or supporting cells. Conclusions: Dissociated guinea pig cochlea produced otospheres in vitro, expressing sox2 and nestin similarly to mouse otospheres. Our data is supporting evidence for the presence of inner ear progenitor cells in the postnatal guinea pig. However, there is limited viability for these cells in neonatal guinea pig cochlea when compared to the differentiation potential observed for the mouse organ of Corti at the same developmental stage.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

This work aimed to evaluate cardiac morphology/function and histological changes induced by bone marrow cells (BMCs) and cultured mesenchymal stem cells (MSCs) injected at the myocardium of spontaneously hypertensive rats (SHR) submitted to surgical coronary occlusion. Female syngeneic adult SHR, submitted (MI) or not (C) to coronary occlusion, were treated 24 h later with in situ injections of normal medium (NM), or with MSCs (MSC) or BMCs (BM) from male rats. The animals were evaluated after 1 and 30 days by echocardiography, histology of heart sections and PCR for the Y chromosome. Improved ejection fraction and reduced left ventricle infarcted area were observed in MSC rats as compared to the other experimental groups. Treated groups had significantly reduced lesion tissue score, increased capillary density and normal (not-atrophied) myocytes, as compared to NM and C groups. The survival rate was higher in C, NM and MSC groups as compared to MI and BM groups. In situ injection of both MSCs and BMCs resulted in improved cardiac morphology, in a more physiological model of myocardial infarction represented by surgical coronary occlusion of spontaneously hypertensive rats. Only treatment with MSCs, however, ameliorated left ventricle dysfunction, suggesting a positive role of these cells in heart remodeling in infarcted hypertensive subjects.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Background: Myelodysplastic syndromes (MDS) are a group of clonal hematological disorders characterized by ineffective hematopoiesis with morphological evidence of marrow cell dysplasia resulting in peripheral blood cytopenia. Microarray technology has permitted a refined high-throughput mapping of the transcriptional activity in the human genome. Non-coding RNAs (ncRNAs) transcribed from intronic regions of genes are involved in a number of processes related to post-transcriptional control of gene expression, and in the regulation of exon-skipping and intron retention. Characterization of ncRNAs in progenitor cells and stromal cells of MDS patients could be strategic for understanding gene expression regulation in this disease. Methods: In this study, gene expression profiles of CD34(+) cells of 4 patients with MDS of refractory anemia with ringed sideroblasts (RARS) subgroup and stromal cells of 3 patients with MDS-RARS were compared with healthy individuals using 44 k combined intron-exon oligoarrays, which included probes for exons of protein-coding genes, and for non-coding RNAs transcribed from intronic regions in either the sense or antisense strands. Real-time RT-PCR was performed to confirm the expression levels of selected transcripts. Results: In CD34(+) cells of MDS-RARS patients, 216 genes were significantly differentially expressed (q-value <= 0.01) in comparison to healthy individuals, of which 65 (30%) were non-coding transcripts. In stromal cells of MDS-RARS, 12 genes were significantly differentially expressed (q-value <= 0.05) in comparison to healthy individuals, of which 3 (25%) were non-coding transcripts. Conclusions: These results demonstrated, for the first time, the differential ncRNA expression profile between MDS-RARS and healthy individuals, in CD34(+) cells and stromal cells, suggesting that ncRNAs may play an important role during the development of myelodysplastic syndromes.