971 resultados para Hematopoietic stem cells transplantation


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Parkinson's disease (PD) is considered the second most frequent and one of the most severe neurodegenerative diseases, with dysfunctions of the motor system and with nonmotor symptoms such as depression and dementia. Compensation for the progressive loss of dopaminergic (DA) neurons during PD using current pharmacological treatment strategies is limited and remains challenging. Pluripotent stem cell-based regenerative medicine may offer a promising therapeutic alternative, although the medical application of human embryonic tissue and pluripotent stem cells is still a matter of ethical and practical debate. Addressing these challenges, the present study investigated the potential of adult human neural crest-derived stem cells derived from the inferior turbinate (ITSCs) transplanted into a parkinsonian rat model. Emphasizing their capability to give rise to nervous tissue, ITSCs isolated from the adult human nose efficiently differentiated into functional mature neurons in vitro. Additional successful dopaminergic differentiation of ITSCs was subsequently followed by their transplantation into a unilaterally lesioned 6-hydroxydopamine rat PD model. Transplantation of predifferentiated or undifferentiated ITSCs led to robust restoration of rotational behavior, accompanied by significant recovery of DA neurons within the substantia nigra. ITSCs were further shown to migrate extensively in loose streams primarily toward the posterior direction as far as to the midbrain region, at which point they were able to differentiate into DA neurons within the locus ceruleus. We demonstrate, for the first time, that adult human ITSCs are capable of functionally recovering a PD rat model.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We previously reported the development of a lethal myeloid sarcoma in a non-human primate model utilizing retroviral vectors to genetically modify hematopoietic stem and progenitor cells. This leukemia was characterized by insertion of the vector provirus into the BCL2A1 gene, with resultant BCL2A1 over-expression. There is little information on the role of this anti-apoptotic member of the BCL2 family in hematopoiesis or leukemia induction. Therefore we studied the impact of Bcl2a1a lentiviral over-expression on murine hematopoietic stem and progenitor cells. We demonstrated the anti-apoptotic function of this protein in hematopoietic cells, but did not detect any impact of Bcl2a1a on in vitro cell growth or cell cycle kinetics. In vivo, we showed a higher propensity of HSCs over-expressing Bcl2a1a to engraft and contribute to hematopoiesis. Mice over-expressing Bcl2a1a in the hematologic compartment eventually developed an aggressive malignant disease characterized as a leukemia/lymphoma of B-cell origin. Secondary transplants carried out to investigate the primitive origin of the disease revealed the leukemia was transplantable. Thus, Bcl2a1 should be considered as a protooncogene with a potential role in both lymphoid and myeloid leukemogenesis, and a concerning site for insertional activation by integrating retroviral vectors utilized in hematopoietic stem cell gene therapy.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Background:The golden retriever muscular dystrophy (GRMD) dogs represent the best available animal model for therapeutic trials aiming at the future treatment of human Duchenne muscular dystrophy (DMD). We have obtained a rare litter of six GRMD dogs (3 males and 3 females) born from an affected male and a carrier female which were submitted to a therapeutic trial with adult human stem cells to investigate their capacity to engraft into dogs muscles by local as compared to systemic injection without any immunosuppression. Methods Human Immature Dental Pulp Stem Cells (hIDPSC) were transplanted into 4 littermate dogs aged 28 to 40 days by either arterial or muscular injections. Two non-injected dogs were kept as controls. Clinical translation effects were analyzed since immune reactions by blood exams and physical scores capacity of each dog. Samples from biopsies were checked by immunohistochemistry (dystrophin markers) and FISH for human probes. Results and Discussion We analyzed the cells' ability in respect to migrate, engraftment, and myogenic potential, and the expression of human dystrophin in affected muscles. Additionally, the efficiency of single and consecutive early transplantation was compared. Chimeric muscle fibers were detected by immunofluorescence and fluorescent in situ hybridisation (FISH) using human antibodies and X and Y DNA probes. No signs of immune rejection were observed and these results suggested that hIDPSC cell transplantation may be done without immunosuppression. We showed that hIDPSC presented significant engraftment in GRMD dog muscles, although human dystrophin expression was modest and limited to several muscle fibers. Better clinical condition was also observed in the dog, which received monthly arterial injections and is still clinically stable at 25 months of age. Conclusion Our data suggested that systemic multiple deliveries seemed more effective than local injections. These findings open important avenues for further researches.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The aim of this study is to assess early homing of placenta-derived stem cells after perinatal intracerebral transplantation in rats.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Mesenchymal stem cell (MSC) therapy is a promising approach for regaining muscle function after trauma. Prior to clinical application, the ideal time of transplantation has to be determined. We investigated the effects of immediate and delayed transplantation. Sprague-Dawley rats received a crush trauma to the left soleus muscle. Treatment groups were transplanted locally with 2 × 10(6) autologous MSCs, either immediately or 7 days after trauma. Saline was used as sham therapy. Contraction force tests and histological analyses were performed 4 weeks after injury. GFP-labelled MSCs were followed after transplantation. The traumatized soleus muscles of the sham group displayed a reduction of twitch forces to 36 ± 17% and of tetanic forces to 29 ± 11% of the non-injured right control side, respectively. Delayed MSC transplantation resulted in a significant improvement of contraction maxima in both stimulation modes (twitch, p = 0.011; tetany, p = 0.014). Immediate transplantation showed a significant increase in twitch forces to 59 ± 17% (p = 0.043). There was no significant difference in contraction forces between muscles treated by immediate and delayed cell transplantation. We were able to identify MSCs in the interstitium of the injured muscles up to 4 weeks after transplantation. Despite the fundamental differences of the local environment, which MSCs encounter after transplantation, similar results could be obtained with respect to functional muscle regeneration. We believe that transplanted MSCs residing in the interstitial compartment evolve their regenerative capabilities through paracrine pathways. Our data suggest a large time window of the therapeutical measures.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

OBJECTIVE: The purpose of this study was to assess the feasibility of autologous stem cell transplantation in fetal sheep and to compare short-term engraftment of allogeneic and autologous fetal liver stem cells in an immunocompetent large animal model. STUDY DESIGN: Fetal liver stem cells were collected from preimmune sheep fetuses with an open or ultrasound-guided technique. After being labeled with PKH26, the cells were transplanted intraperitoneally into allogeneic and autologous fetal recipients at 48 to 64 days of gestation. Engraftment was determined by flow cytometry and real-time polymerase chain reaction 1 to 2 weeks after transplantation. RESULTS: Fetal loss rate was 29% (allogeneic transplantation) and 73% (autologous transplantation). Engraftment of donor cells was found in all fetuses, with a level of < or =4.7% in fetal liver, spleen, bone marrow, blood and thymus. Overall, there was no difference between allogeneic and autologous grafts. CONCLUSION: Autologous in utero transplantation of fetal liver stem cells in fetal sheep is feasible, but yields a high loss rate. Differences in the major histocompatibility complex between donor and recipient seems not to have a major impact on stem cell engraftment early in gestation; major histocompatibility complex-independent donor/host competition might be responsible for low engraftment in immunocompetent recipients.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Hematopoietic stem cell (HSC) aging has become a concern in chemotherapy of older patients. Humoral and paracrine signals from the bone marrow (BM) hematopoietic microenvironment (HM) control HSC activity during regenerative hematopoiesis. Connexin-43 (Cx43), a connexin constituent of gap junctions (GJs) is expressed in HSCs, down-regulated during differentiation, and postulated to be a self-renewal gene. Our studies, however, reveal that hematopoietic-specific Cx43 deficiency does not result in significant long-term competitive repopulation deficiency. Instead, hematopoietic Cx43 (H-Cx43) deficiency delays hematopoietic recovery after myeloablation with 5-fluorouracil (5-FU). 5-FU-treated H-Cx43-deficient HSC and progenitors (HSC/P) cells display decreased survival and fail to enter the cell cycle to proliferate. Cell cycle quiescence is associated with down-regulation of cyclin D1, up-regulation of the cyclin-dependent kinase inhibitors, p21cip1. and p16INK4a, and Forkhead transcriptional factor 1 (Foxo1), and activation of p38 mitogen-activated protein kinase (MAPK), indicating that H-Cx43-deficient HSCs are prone to senescence. The mechanism of increased senescence in H-Cx43-deficient HSC/P cells depends on their inability to transfer reactive oxygen species (ROS) to the HM, leading to accumulation of ROS within HSCs. In vivo antioxidant administration prevents the defective hematopoietic regeneration, as well as exogenous expression of Cx43 in HSC/P cells. Furthermore, ROS transfer from HSC/P cells to BM stromal cells is also rescued by reexpression of Cx43 in HSC/P. Finally, the deficiency of Cx43 in the HM phenocopies the hematopoietic defect in vivo. These results indicate that Cx43 exerts a protective role and regulates the HSC/P ROS content through ROS transfer to the HM, resulting in HSC protection during stress hematopoietic regeneration.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Human hematopoiesis originates in a population of stem cells with transplantable lympho-myeloid reconstituting potential, but a method for quantitating such cells has not been available. We now describe a simple assay that meets this need. It is based on the ability of sublethally irradiated immunodeficient nonobese diabetic–scid/scid (NOD/SCID) mice to be engrafted by intravenously injected human hematopoietic cells and uses limiting dilution analysis to measure the frequency of human cells that produce both CD34−CD19+ (B-lymphoid) and CD34+ (myeloid) colony-forming cell progeny in the marrow of such recipients 6 to 8 weeks post-transplant. Human cord blood (CB) contains ≈5 of these competitive repopulating units (CRU) per ml that have a similar distribution between the CD38− and CD38+ subsets of CD34+ CB cells as long-term culture-initiating cells (LTC-IC) (4:1 vs. 2:1). Incubation of purified CD34+CD38− human CB cells in serum-free medium containing flt-3 ligand, Steel factor, interleukin 3, interleukin 6, and granulocyte colony-stimulating factor for 5–8 days resulted in a 100-fold expansion of colony-forming cells, a 4-fold expansion of LTC-IC, and a 2-fold (but significant, P < 0.02) increase in CRU. The culture-derived CRU, like the original CB CRU, generated pluripotent, erythroid, granulopoietic, megakaryopoietic, and pre-B cell progeny upon transplantation into NOD/SCID mice. These findings demonstrate an equivalent phenotypic heterogeneity amongst human CB cells detectable as CRU and LTC-IC. In addition, their similarly modest response to stimulation by a combination of cytokines that extensively amplify LTC-IC from normal adult marrow underscores the importance of ontogeny-dependent changes in human hematopoietic stem cell proliferation and self-renewal.