308 resultados para Hematologia
Resumo:
Leukemia is a genetic disease from a noncontrolled abnormal process of the hematopoietic cells' differentiation and proliferation. Some alterations of structure and number of chromosomes have been well and specifically observed in leukemia. The detection of these alterations is highly significant in providing the patients' diagnosis, prognosis and treatment as well as the understanding of the genetic bases of this disease. The purpose of this work is to study some chromosomal alterations in peripheral blood and/or bone marrow in patients with different leukemia types by means of conventional cytogenetic techniques, and also to investigate the presence of BCR/ABL gene rearrangement and some alterations in chromosome 20 by the FISH technique. Samples of peripheral blood and/or bone marrow of 28 patients, who were not under chemoor radio-therapeutic treatment, were studied: 15 with CML, 11 with AML and 2 with ALL. The alteration most frequent was t(9;22) in the CML, whose presence or absence was related to a good or bad prognosis, respectively. A case of AMI showed inv(16)(p13q22), related to a good prognosis. Some alterations not reported previously in the literature were found, such as the trisomy in chromosome 2 associated to chromosome Ph showing some disease progress in one of the CML cases and t(5;16)(q13;q22) in an AML patient. One of the cases was submitted to an allogeneic hone marrow transplant. The monitoring after the 23 rd day of transplant, detected 95% of the donor cells suggesting the procedure had succeeded. Two patients, an AMI and the other ALL, showed trisomy of chromosome 20 in the neoplastic cells. The results showed the importance of the cytogenetic analysis in relation to leukemia, its direct benefits to the patients and the biological mechanisms involved in this disease. They also allowed the introduction in the Genetic Service of FAMERP techniques to obtain the bone marrow metaphases and the FISH technique.
Resumo:
This article describes the structures and functions of the erythrocyte membrane and its importance in transfusional medicine. The erythrocyte membrane is one of the best known membranes in terms of structure, function and genetic disorders. As any other plasma membrane, it mediates transport functions. It also provides the erythrocytes with their resilience and deformability. According to the International Society of Blood Transfusion (ISBT), more than 500 antigens are expressed in the erythrocyte membrane, and around 270 are involved in transfusion reaction cases and hemolytic diseases of the fetus and newborn. In the ISBT classification, the high frequency series is represented by antigens in more than 99% of population (high prevalence antigen). In transfusion, the absence of these antigens determines severe problems as for example, one woman without the P antigen suffered 6 repetitive miscarriages due to placental insufficiency, which was caused by an antibody formed against the absent P antigen. Some important erythrocyte membrane proteins are described here including Band 3, Glycophorins and spectrin. The most abundant integral membrane protein is Band 3 and its main function is to mediate exchange of chloride and bicarbonate anions across the plasma membrane. The second most abundant integral membrane protein in the human erythrocyte is sialoglycoprotein glycophorin A (GPA). With its high sialic acid content, GPA is the main contributor to the net negative cell-surface charge and is thus critical for minimizing cell-cell interactions and preventing red cell aggregation. Glycophorin C (GPC) is the receptor for PfEBP-2 (baebl, EBA-140), the newly identified erythrocyte binding ligand of Plasmodium falciparum. The ternary complex of spectrin, actin and 4.1R defines the nodes of the erythrocyte membrane skeletal network, and is inseparable from membrane stability when under mechanical stress. This erythrocyte membrane review is important for a better understanding of transfusion reactions, where the antibody formation against high prevalence antigens makes compatible transfusions difficult. The study of antigen diversity and biochemical characterization of different proteins will contribute to healthcare, as well as diagnosis, development of technology such as monoclonal antibody production and the therapeutic conduct of many diseases.
Resumo:
Sickle cell disease is an inflammatory condition with a pathophysiology that involves vaso-occlusive episodes. Mutations of the methylenetetrahydrofolate reductase (MTHFR) and cystathionine beta-synthase (CBS) genes are risk factors for vascular disease. Due to the importance of identifying risk factors for vaso-occlusive events in sickle cell patients, we investigated the frequencies of the C677T and 844ins68 mutations of the MTHFR and CBS genes, respectively. Three hundred patients with Hb SS, HB SC and HbS/Beta thalassemia, from Brasília, Goiânia, Rio de Janeiro, São Jose do Rio Preto and São Paulo were evaluated. Samples of 5 mL of venous blood were collected in EDTA after informed consent was received from patients. Classical diagnostic methods were used to confirm the hemoglobin phenotypes. The hemoglobin genotypes and polymorphisms studied were evaluated by Restriction Fragment Length Polymorphism and Allele Specific amplification. The results showed that 93 patients (31.00%) were heterozygous and 13 (4.33%) homozygous for the C677T mutation and 90 were heterozygotes (30.00%) and 8 homozygous (2.66%) for the 844ins68 mutation, both with significant differences for genotype frequency between the localities. The allelic frequencies are in Hardy-Weinberg equilibrium for both polymorphisms. The frequency of mutations was significant and the presence of related vaso-occlusive events was more common in patients with Hb SS (p = 0007). The 844ins68 mutation was approximately three times more frequent in patients with vaso-occlusive complications (p = 0011). The C677T mutation did not prove to be associated with risk of vaso-occlusive events (p = 0.193). A C677T-844ins68 interaction occurred in 12.08% of the patients, doubling the risk of vaso-occlusive manifestations. The frequencies of the polymorphisms are consistent with those expected in the Brazilian population. The presence of the 844ins68 mutation of the CBS gene proved to be a potential risk factor for vaso-occlusive events in sickle cell patients.
Resumo:
The oxygenation of human Hb (HbA) demands a three state model: two deoxy states To and Tx, free and complexed with anions respectively, and an oxy R state. The regulation between these states is modulated by the presence of anions, such as chloride, that binds to T state. The b inding if chloride, however, remains controversial. The aim of this work is the study of arginines 92a (a1ß2 interface) and 141a (C-terminal) as chloride binding sites. To investigate that, we have studied 92 and 141 site directed mutant species: natural mutants Hb J-Cape-Town (R92Q), desArg (R141Δ), Chesapeake (R92L), and the constructed Chesapeake desArg (R92L,141Δ). We expressed Hbs in Escherichia coli and purified. Through oxygen binding curves we measured affinity and cooperativity, in function of water effect and Bohr effect in presence and absence of chloride. Structural features were obtained through 1H NMR spectroscopy Oxygen binding properties and Bohr effect measured indicated a higher affinity and lower cooperativity in absence and presence of chloride for all mutants. Structural changes represent functional aspects of mutant Hbs, such as a significant rise in affinity or a change in cooperativity. Water activity studies conducted as a function of chloride concentration showed that the only Hb desArg follows the thre state model. The other mutant Hbs do not exhibit the Tx state, a fact confirmed by the number of water molecules bound to each Hb during the deoxy-oxy transition. This behavior suggests that the Arginine 92 site could be responsible for chloride binding to Hb, since oxygenation of 92 mutant Hbs cannot be adjusted by the three state model. However, Bohr effect showed that all mutant Hbs released~1 proton in chloride presence, different from HbA that releases ~2, suggesting a role for 141 arginine in the tertiary and quaternary Bohr effect.
Resumo:
Sickle cell disease (SCD) is a hereditary hemolytic anemia caused by the inheritance of one S hemoglobin gene from each ancestor. Patients with SCD present increased circulating levels of cytokines, including TNF-alpha (TNF-α). Hydroxyurea (HU) is the available therapeutically strategy for treatment; it acts as a source of nitric oxide and benefits patients by increasing the levels of fetal hemoglobin (HbF). Thus, within one research line that aims at finding new drugs, a series of compounds with TNF-α inhibition and nitric oxide donation properties have been synthesized in order to explore possible synergism of actions beneficial in the treatment of the disease. Six compounds were synthesized: five derivatives of organic nitrates and one of sulfonamide. The compounds, (1,3-dioxo-1,3-dihydro-2Hisoindol-2-yl) methyl nitrate (compound I); (1,3-dioxo-1,3-dihydro-2H-isoindol-2-yl) ethyl nitrate (compound II); 3-(1,3-dioxo-1,3-dihydro-2H-isoindol-2-yl) benzyl nitrate (compound III);4-(1,3-dioxo-1,3-dihydro-2H-isoindol-2-yl)-N-hydroxybenzenesulfonamide (compound IV); 4-(1,3-dioxo-1,3-dihydro-2H-isoindol-2-yl) benzyl nitrate (compound V) and 2-[4-(1,3-dioxo-1,3-dihydro-2H-isoindol-2-yl) phenyl]ethyl nitrate (compound VI), were synthesized using linear synthetic methodology, with excellent overall yields. All compounds showed anti-inflammatory and analgesic effects with a reduction in 43%-65% of ear edema in mice and a reduction of 25%-42% of writhing induced by acetic acid. All compounds showed comparable reductions in the leukocyte infiltration capacity and ability to generate nitric oxide. The aryl compounds (III, IV and V) presented less mutagenic activity compared to compounds I, II and VI according to the salmonella mutagenicity assay (Ames test). Compounds IV and VI showed activity in K562 culture cells, with increases in gamma globin gene expression to levels higher than with hydroxyurea suggesting a potential to increase fetal hemoglobin. This data set characterizes new potentially useful drug candidates for the treatment of symptoms of sickle cell anemia.
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
Pós-graduação em Pesquisa e Desenvolvimento (Biotecnologia Médica) - FMB