985 resultados para Hares, Fossil


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Linear- and unimodal-based inference models for mean summer temperatures (partial least squares, weighted averaging, and weighted averaging partial least squares models) were applied to a high-resolution pollen and cladoceran stratigraphy from Gerzensee, Switzerland. The time-window of investigation included the Allerød, the Younger Dryas, and the Preboreal. Characteristic major and minor oscillations in the oxygen-isotope stratigraphy, such as the Gerzensee oscillation, the onset and end of the Younger Dryas stadial, and the Preboreal oscillation, were identified by isotope analysis of bulk-sediment carbonates of the same core and were used as independent indicators for hemispheric or global scale climatic change. In general, the pollen-inferred mean summer temperature reconstruction using all three inference models follows the oxygen-isotope curve more closely than the cladoceran curve. The cladoceran-inferred reconstruction suggests generally warmer summers than the pollen-based reconstructions, which may be an effect of terrestrial vegetation not being in equilibrium with climate due to migrational lags during the Late Glacial and early Holocene. Allerød summer temperatures range between 11 and 12°C based on pollen, whereas the cladoceran-inferred temperatures lie between 11 and 13°C. Pollen and cladocera-inferred reconstructions both suggest a drop to 9–10°C at the beginning of the Younger Dryas. Although the Allerød–Younger Dryas transition lasted 150–160 years in the oxygen-isotope stratigraphy, the pollen-inferred cooling took 180–190 years and the cladoceran-inferred cooling lasted 250–260 years. The pollen-inferred summer temperature rise to 11.5–12°C at the transition from the Younger Dryas to the Preboreal preceded the oxygen-isotope signal by several decades, whereas the cladoceran-inferred warming lagged. Major discrepancies between the pollen- and cladoceran-inference models are observed for the Preboreal, where the cladoceran-inference model suggests mean summer temperatures of up to 14–15°C. Both pollen- and cladoceran-inferred reconstructions suggest a cooling that may be related to the Gerzensee oscillation, but there is no evidence for a cooling synchronous with the Preboreal oscillation as recorded in the oxygen-isotope record. For the Gerzensee oscillation the inferred cooling was ca. 1 and 0.5°C based on pollen and cladocera, respectively, which lies well within the inherent prediction errors of the inference models.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The development of Soppensee (Central Switzerland, 596 m a.s.l.) has been reconstructed using algal remains such as diatoms, chlorophytes and fossil pigments, as well as the pollen and spores of macrophytes. Sediment accumulation in Soppensee began at the end of the last glacial period, approximately 15,000 yrs ago. During the Oldest Dryas biozone (> 12,700 radiocarbon yrs B.P.) the lake had low primary productivity. After reforestation with birch and later pine, around 12,700 B.P., phases of summer anoxia occurred in the lake. These anoxic conditions were most probably caused by additional carbon input from the catchment, as well as longer phases of stratification due to reduced wind exposure caused by the sheltering effect of increased tree cover. From the Younger Dryas biozone (10,800 to 10,000 radiocarbon yrs B.P.) onwards, Soppensee became meromictic for several millennia.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Diatom analyses with an annual resolution were carried out on varves of the hypertrophic Baldeggersee (Central Swiss Plateau) for the timespan ad 1885 to 1993. They reveal seven major changes in the dominant planktonic diatoms. As a result of progressive nutrient enrichment, Baldeggersee changed in the 1910s from a Cyclotella to a Tabellaria fenestrata dominated assemblage, and eventually in the 1950s to a Stephanodiscus parvus dominated diatom assemblage. The timing and direction of diatom-assemblage changes in the varved sediment compare well with sedimentological and limnological observations. Partitioning of the variance in the diatom data revealed that TP is a stronger explanatory variable than temperature for these changes. A diatom-inferred total phosphorus (TP) reconstruction indicates three major steps in eutrophication, occurring at 1909, the mid-1950s and the mid-1970s. Comparison with TP measurements in the water column demonstrates that the diatom-TP inference model used is able to hindcast past TP concentrations reliably. The major steps in eutrophication led to decreases in diatom diversity and also resulted in a progressive increase of calcite grain-size. The lake restoration programme established since 1982 shows no direct impact on the composition of the diatom assemblages. However, the decrease in phosphorus loads since the mid-1970s is reflected in the diatom assemblages and in decreasing diatom-inferred TP concentrations.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This paper is based upon data collected during the summers of 1912 and 1913. Mr. A. O. Hayes and Prof. van Ingen of Princeton University, while making a study of the general geology, stratigraphy, and palaeontology of the shores of Conception Bay, Newfoundland, came upon the manganiferous rocks of the Lower Cambrian exposed at Manuels, Topsail, Brigus, and other places. The following summer, of 1913, the writer as a member of the Princeton Newfoundland Expedition undertook a more detailed study of these deposits. In this paper therefore there has been an attempt to present as comprehensive a study of the manganese of southeastern Newfoundland. It is primarily chemical in its nature and the analyses herewith presented are from samples taken from the principal manganese-bearing beds.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The relationship between decadal to centennial changes in ocean circulation and climate is difficult to discern using the sparse and discontinuous instrumental record of climate and, as such, represents a large uncertainty in coupled ocean-atmosphere general circulation models. We present new modern and fossil coral radiocarbon (D14C) records from Palmyra (6°N, 162°W) and Christmas (2°N, 157°W) islands to constrain central tropical Pacific ocean circulation changes during the last millennium. Seasonally to annually resolved coral D14C measurements from the 10th, 12th-17th, and 20th centuries do not contain significant interannual to decadal-scale variations, despite large changes in coral d18O on these timescales. A centennial-scale increase in coral radiocarbon from the Medieval Climate Anomaly (~900-1200 AD) to the Little Ice Age (~1500-1800) can be largely explained by changes in the atmospheric D14C, as determined with a box model of Palmyra mixed layer D14C. However, large 12th century depletions in Palmyra coral D14C may reflect as much as a 100% increase in upwelling rates and/or a significant decrease in the D14C of higher-latitude source waters reaching the equatorial Pacific during this time. SEM photos reveal evidence for minor dissolution and addition of secondary aragonite in the fossil corals, but our results suggest that coral D14C is only compromised after moderate to severe diagenesis for these relatively young fossil corals.