955 resultados para HYSTRICOGNATH RODENTS
Resumo:
Many studies of caloric restriction (CR) in rodents and lower animals indicate that this nutritional manipulation retards aging processes, as evidenced by increased longevity, reduced pathology, and maintenance of physiological function in a more youthful state. The anti-aging effects of CR are believed to relate, at least in part, to changes in energy metabolism. We are attempting to determine whether similar effects occur in response to CR in nonhuman primates. Core (rectal) body temperature decreased progressively with age from 2 to 30 years in rhesus monkeys fed ad lib (controls) and is reduced by approximately 0.5 degrees C in age-matched monkeys subjected to 6 years of a 30% reduction in caloric intake. A short-term (1 month) 30% restriction of 2.5-year-old monkeys lowered subcutaneous body temperature by 1.0 degrees C. Indirect calorimetry showed that 24-hr energy expenditure was reduced by approximately 24% during short-term CR. The temporal association between reduced body temperature and energy expenditure suggests that reductions in body temperature relate to the induction of an energy conservation mechanism during CR. These reductions in body temperature and energy expenditure are consistent with findings in rodent studies in which aging rate was retarded by CR, now strengthening the possibility that CR may exert beneficial effects in primates analogous to those observed in rodents.
Resumo:
The process of seed dispersal of many animal-dispersed plants is frequently mediated by a small set of biotic agents. However, the contribution that each of these dispersers makes to the overall recruitment may differ largely, with important ecological and management implications for the population viability and dynamics of the species implied in these interactions. In this paper, we compared the relative contribution of two local guilds of scatter-hoarding animals with contrasting metabolic requirements and foraging behaviours (rodents and dung beetles) to the overall recruitment of two Quercus species co-occurring in the forests of southern Spain. For this purpose, we considered not only the quantity of dispersed seeds but also the quality of the seed dispersal process. The suitability for recruitment of the microhabitats where the seeds were deposited was evaluated in a multi-stage demographic approach. The highest rates of seed handling and predation occurred in those microhabitats located under shrubs, mostly due to the foraging activity of rodents. However, the probability of a seed being successfully cached was higher in microhabitats located beneath a tree canopy as a result of the feeding behaviour of beetles. Rodents and beetles showed remarkable differences in their effectiveness as local acorn dispersers. Quantitatively, rodents were much more important than beetles because they dispersed the vast majority of acorns. However, they were qualitatively less effective because they consumed a high proportion of them (over 95%), and seeds were mostly dispersed under shrubs, a less suitable microhabitat for short-term recruitment of the two oak species. Our findings demonstrate that certain species of dung beetles (such as Thorectes lusitanicus), despite being quantitatively less important than rodents, can act as effective local seed dispersers of Mediterranean oak species. Changes in the abundance of beetle populations could thus have profound implications for oak recruitment and community dynamics.
Resumo:
v.31:no.7(1947)
Resumo:
Mode of access: Internet.
Resumo:
"CDC Training Program"--Cover.
Resumo:
DCC (deleted in colorectal cancer)-the receptor of the netrin-1 neuronal guidance factor-is expressed and is active in the central nervous system (CNS) during development, but is down-regulated during maturation. The substantia nigra contains the highest level of netrin-1 mRNA in the adult rodent brain, and corresponding mRNA for DCC has also been detected in this region but has not been localized to any particular neuron type. In this study, an antibody raised against DCC was used to determine if the protein was expressed by adult dopamine neurons, and identify their distribution and projections. Significant DCC-immunoreactivity was detected in midbrain, where it was localized to ventrally displaced A9 dopamine neurons in the substantia nigra, and ventromedial A10 dopamine neurons predominantly situated in and around the interfascicular nucleus. Strong immunoreactivity was not detected in dopamine neurons found elsewhere, or in non-dopamine-containing neurons in the midbrain. Terminal fields selectively labeled with DCC antibody corresponded to known nigrostriatal projections to the dorsolateral striatal patches and dorsomedial shell of the accumbens, and were also detected in prefrontal cortex, septum, lateral habenular and ventral pallidum. The unique distribution of DCC-immunoreactivity in adult ventral midbrain dopamine neurons suggests that netrin-1/DCC signaling could function in plasticity and remodeling previously identified in dopamine projection pathways. In particular, a recent report that DCC is regulated through the ubiquitin-proteosome system via Siah/Sina proteins, is consistent with a potential involvement in genetic and sporadic forms of Parkinson's disease. (c) 2005 IBRO. Published by Elsevier Ltd. All rights reserved.
Resumo:
In Thailand, the leaves of Aquilaria crassna have been used traditionally for the treatments of various disorders, but without any scientific analysis. In this study, the antipyretic, analgesic, anti-inflammatory and anti-oxidative properties of A. crassna leaves extract were investigated at a wide dose range in rodents. Experimental animals were treated orally with an aqueous extract of Aquilaria crassna leaves (ACE). They were tested for antipyretic (Baker′s yeast-induced fever in rats), analgesic (hot plate test in mice) and anti-inflammatory (carrageenan-induced paw edema in rats) activities. An anti-oxidative effect of ACE was evaluated by using the DPPH anti-oxidant assay. The results showed that, after 5 hours of yeast injection, 400 and 800 mg/kg ACE significantly reduced the rectal temperature of rats. Mice were found significantly less sensitive to heat at an oral dose of 800 mg/kg ACE, after 60 and 90 min. No anti-inflammatory activity of ACE at an 800 mg/kg dose could be observed in the rat paw assay. An anti-oxidative activity of ACE was observed with an IC 50 value of 47.18 g/ ml. No behavioral or movement change could be observed in mice after oral administration of ACE (800 or 8,000 mg/kg) for seven consecutive days. Interestingly, from the second day of treatment, animals had a significant lower body weight at the 8,000 mg/kg dose of ACE compared to the control. No toxicity was identified and the results of this study state clearly that Aquilaria crassna leaves extracts possess antipyretic, analgesic and anti-oxidative properties without anti-inflammatory activity.
Resumo:
Acknowledgements JRS was supported by the Strategic Priority Research Program of the Chinese Academy of Sciences (grant XDB13030000), a ‘1000 talents’ professorship from the Ministry of Science and Technology (MOST) of the Chinese government, and a Wolfson award from the Royal Society. SEM was supported by the US National Institute of Health grant R01AG043972 and MM was supported by a TWAS studentship of the Chinese Academy of Sciences, during the preparation of this manuscript. We are grateful to three anonymous referees for their constructive and helpful comments.
Resumo:
Leptospirosis is an important but neglected zoonotic disease that is often overlooked in Africa. Although comprehensive data on the incidence of human disease are lacking, robust evidence of infection has been demonstrated in people and animals from all regions of the continent. However, to date, there are few examples of direct epidemiological linkages between human disease and animal infection. In East Africa, awareness of the importance of human leptospirosis as a cause of non-malarial febrile illness is growing. In northern Tanzania, acute leptospirosis has been diagnosed in 9% of patients with severe febrile illness compared to only 2% with malaria. However, little is known about the relative importance of different potential animal hosts as sources of human infection in this area. This project was established to investigate the roles of rodents and ruminant livestock, important hosts of Leptospira in other settings, in the epidemiology of leptospirosis in northern Tanzania. A cross-sectional survey of rodents living in and around human settlements was performed alongside an abattoir survey of ruminant livestock. Unusual patterns of animal infection were detected by real-time PCR detection. Renal Leptospira infection was absent from rodents but was detected in cattle from several geographic areas. Infection was demonstrated for the first time in small ruminants sub-Saharan Africa. Two major Leptospira species and a novel Leptospira genotype were detected in livestock. L. borgpetersenii was seen only in cattle but L. kirschneri infection was detected in multiple livestock species (cattle, sheep and goats), suggesting that at least two distinct patterns of Leptospira infection occur in livestock in northern Tanzania. Analysis of samples from acute leptospirosis in febrile human patients could not detect Leptospira DNA by real-time PCR but identified social and behavioural factors that may limit the utility of acute-phase diagnostic tests in this community. Analysis of serological data revealed considerable overlap between serogroups detected in cattle and human leptospirosis cases. Human disease was most commonly attributed to the serogroups Mini and Australis, which were also predominant reactive serogroups in cattle. Collectively, the results of this study led to the hypothesis that livestock are an important reservoir of Leptospira infection for people in northern Tanzania. These results also challenge our understanding of the relationship between Leptospira and common invasive rodent species, which do not appear to maintain infection in this setting. Livestock Leptospira infection has substantial potential to affect the well-being of people in East Africa, through direct transmission of infection or through indirect effects on food production and economic security. Further research is needed to quantify the impact of livestock leptospirosis in Africa and to develop effective interventions for the control of human and animal disease.
Resumo:
International audience
Resumo:
To date, 21 species of the genus Angiostrongylus (Nematoda: Angiostrongylidae) have been reported around the world, 15 of which are parasites of rodents. In this study, new host, geographic records, and histopathologic studies of Angiostrongylus spp in sigmodontine rodents from Argentina, with an updated summary of records from rodent hosts and host specificity assessment, are provided. Records of Angiostrongylus costaricensis from Akodon montensis and Angiostrongylus morerai from six new hosts and geographical localities in Argentina are reported. The gross and histopathologic changes in the lungs of the host species due to angiostrongylosis are described. Published records of the genus Angiostrongylus from rodents and patterns of host specificity are presented. Individual Angiostrongylus species parasitise between one-19 different host species. The most frequent values of the specificity index (STD) were between 1-5.97. The elevated number of host species (n = 7) of A. morerai with a STD = 1.86 is a reflection of multiple systematic studies of parasites from sigmodontine rodents in the area of Cuenca del Plata, Argentina, showing that an increase in sampling effort can result in new findings. The combination of low host specificity and a wide geographic distribution of Angiostrongylus spp indicates a troubling epidemiological scenario although, as yet, no human cases have been reported.
Resumo:
This study shows an experimental spillover infection of Sigmodontinae rodents with Rio Mamore hantavirus (RIOMV). Necromys lasiurus and Akodon sp were infected with 103 RNA copies of RIOMV by intraperitoneal administration. The viral genome was detected in heart, lung, and kidney tissues 18 days after infection (ai), and viral excretion in urine and faeces began at four and six ai, respectively. These results reveal that urine and faeces of infected rodents contain the virus for at least 18 days. It is possible that inhaled aerosols of these excreta could transmit hantavirus to humans and other animals.
Resumo:
Purpose: To assess the effects of oral glutamate intake on acute motor effects and chronic intake of ethanol in rodents. Methods: The acute effects of ethanol on motor function were studied in ICR mice by giving 2 or 6 g/kg of ethanol 2 h after distilled water or 2.5 g/kg glutamate per os. Thirty minutes after ethanol treatment, behavioral assays, including rotarod tests and foot print analysis were monitored. In chronic ethanol treatment, male Wistar rats were trained to consume ethanol-sucrose solution during a 2-h period daily, starting with 2 % ethanol/10 % sucrose and gradually increasing to 10 % ethanol/5 % sucrose solution over 56 days. After training session, the drug treatment phase was done for 10 days. The animals were force-fed 50 mg/kg/day topiramate or 2.5 g/kg/day glutamate 2 h before ethanol treatment sessions. Each day, ethanol intake, water intake, food intake and body weight were recorded. Results: Mice that received 2 or 6 g/kg of ethanol orally, showed a significant reduction in time on the rod in the rotarod test and a significant increase in both forelimb and hindlimb stride lengths when compared to control. Oral treatment with 2.5 g/kg of glutamate reversed the acute motor effects of ethanol. In chronic ethanol treatment, the intake of 10 % ethanol/5 % sucrose, accessible for 2 h, was significantly decreased in rats treated with either topiramate or glutamate. Conclusion: These results provide evidence that oral glutamate administration help to reduce the acute motor effects of ethanol in mice and ethanol intake in the chronic ethanol drinking rats.
Resumo:
Uncoupling protein one (UCP1) is a mitochondrial inner membrane protein capable of uncoupling the electrochemical gradient from adenosine-5'-triphosphate (ATP) synthesis, dissipating energy as heat. UCP1 plays a central role in nonshivering thermogenesis in the brown adipose tissue (BAT) of hibernating animals and small rodents. A UCP1 ortholog also occurs in plants, and aside from its role in uncoupling respiration from ATP synthesis, thereby wasting energy, it plays a beneficial role in the plant response to several abiotic stresses, possibly by decreasing the production of reactive oxygen species (ROS) and regulating cellular redox homeostasis. However, the molecular mechanisms by which UCP1 is associated with stress tolerance remain unknown. Here, we report that the overexpression of UCP1 increases mitochondrial biogenesis, increases the uncoupled respiration of isolated mitochondria, and decreases cellular ATP concentration. We observed that the overexpression of UCP1 alters mitochondrial bioenergetics and modulates mitochondrial-nuclear communication, inducing the upregulation of hundreds of nuclear- and mitochondrial-encoded mitochondrial proteins. Electron microscopy analysis showed that these metabolic changes were associated with alterations in mitochondrial number, area and morphology. Surprisingly, UCP1 overexpression also induces the upregulation of hundreds of stress-responsive genes, including some involved in the antioxidant defense system, such as superoxide dismutase (SOD), glutathione peroxidase (GPX) and glutathione-S-transferase (GST). As a consequence of the increased UCP1 activity and increased expression of oxidative stress-responsive genes, the UCP1-overexpressing plants showed reduced ROS accumulation. These beneficial metabolic effects may be responsible for the better performance of UCP1-overexpressing lines in low pH, high salt, high osmolarity, low temperature, and oxidative stress conditions. Overexpression of UCP1 in the mitochondrial inner membrane induced increased uncoupling respiration, decreased ROS accumulation under abiotic stresses, and diminished cellular ATP content. These events may have triggered the expression of mitochondrial and stress-responsive genes in a coordinated manner. Because these metabolic alterations did not impair plant growth and development, UCP1 overexpression can potentially be used to create crops better adapted to abiotic stress conditions.
Resumo:
Sphingosine 1-phosphate receptor 1 (S1PR1) is a G-protein-coupled receptor for sphingosine-1-phosphate (S1P) that has a role in many physiological and pathophysiological processes. Here we show that the S1P/S1PR1 signalling pathway in hypothalamic neurons regulates energy homeostasis in rodents. We demonstrate that S1PR1 protein is highly enriched in hypothalamic POMC neurons of rats. Intracerebroventricular injections of the bioactive lipid, S1P, reduce food consumption and increase rat energy expenditure through persistent activation of STAT3 and the melanocortin system. Similarly, the selective disruption of hypothalamic S1PR1 increases food intake and reduces the respiratory exchange ratio. We further show that STAT3 controls S1PR1 expression in neurons via a positive feedback mechanism. Interestingly, several models of obesity and cancer anorexia display an imbalance of hypothalamic S1P/S1PR1/STAT3 axis, whereas pharmacological intervention ameliorates these phenotypes. Taken together, our data demonstrate that the neuronal S1P/S1PR1/STAT3 signalling axis plays a critical role in the control of energy homeostasis in rats.