912 resultados para HYPOCOTYL CULTURES
Resumo:
To link the presence of intrathecal virus-specific oligoclonal immunoglobulin G (IgG) in multiple sclerosis patients to a demyelinating activity, aggregating rat brain cell cultures were treated with antibodies directed against two viruses, namely, rubella (RV) and hepatitis B (HB). Anti-RV antibodies in the presence of complement decreased myelin basic protein concentrations in a dose-dependent manner, whereas anti-HB antibodies had no effect. A similar but less pronounced effect was observed on the enzymatic activity of 2',3'-cyclic nucleotide 3'-phosphohydrolase, which is enriched in noncompact membranes of oligodendrocytes. These effects were comparable to those in cultures treated with antibodies directed against myelin oligodendrocyte glycoprotein (MOG), previously found to be myelinotoxic both in vitro and in vivo. Sequence homologies were found between structural glycoprotein E(2) of RV and MOG, suggesting that demyelination was due to molecular mimicry. To support the hypothesis that demyelination was caused by anti-RV IgG that recognized an MOG epitope, we found that anti-RV antibodies depleted MOG in a dose-dependent manner. Further evidence came from the demonstration that anti-RV and anti-MOG IgG colocalized on oligodendrocyte processes and that both revealed by Western blot a 28 kDa protein in CNS myelin, a molecular weight corresponding to MOG. These findings suggest that a virus such as RV exhibiting molecular mimicry with MOG can trigger an autoimmune demyelination.
Resumo:
Ochratoxin A (OTA), a mycotoxin and widespread food contaminant, is known for its patent nephrotoxicity and potential neurotoxicity. Previous observations in vitro showed that in the CNS, glial cells were particularly sensitive to OTA. In the search for the molecular mechanisms underlying OTA neurotoxicity, we investigated the relationship between OTA toxicity and glial reactivity, in serum-free aggregating brain cell cultures. Using quantitative reverse transcriptase-polymerase chain reaction to analyze changes in gene expression, we found that in astrocytes, non cytotoxic concentrations of OTA down-regulated glial fibrillary acidic protein, while it up-regulated vimentin and the peroxisome proliferator-activated receptor-gamma expression. OTA also up-regulated the inducible nitric oxide synthase and the heme oxygenase-1. These OTA-induced alterations in gene expression were more pronounced in cultures at an advanced stage of maturation. The natural peroxisome proliferator-activated receptor-gamma ligand, 15-deoxy-delta(12,14) prostaglandin J2, and the cyclic AMP analog, bromo cyclic AMP, significantly attenuated the strong induction of peroxisome proliferator-activated receptor-gamma and inducible nitric oxide synthase, while they partially reversed the inhibitory effect of OTA on glial fibrillary acidic protein. The present results show that OTA affects the cytoskeletal integrity of astrocytes as well as the expression of genes pertaining to the brain inflammatory response system, and suggest that a relationship exists between the inflammatory events and the cytoskeletal changes induced by OTA. Furthermore, these results suggest that, by inducing an atypical glial reactivity, OTA may severely affect the neuroprotective capacity of glial cells.
Resumo:
Immunoreactivity to calbindin D-28k, a vitamin D-dependent calcium-binding protein, is expressed by neuronal subpopulations of dorsal root ganglia (DRG) in the chick embryo. To determine whether the expression of this phenotypic characteristic is maintained in vitro and controlled by environmental factors, dissociated DRG cell cultures were performed under various conditions. Subpopulations of DRG cells cultured at embryonic day 10 displayed calbindin-immunoreactive cell bodies and neurites in both neuron-enriched or mixed DRG cell cultures. The number of calbindin-immunoreactive ganglion cells increased up to 7-10 days of culture independently of the changes occurring in the whole neuronal population. The presence of non-neuronal cells, which promotes the maturation of the sensory neurons, tended to reduce the percentage of calbindin-immunoreactive cell bodies. Addition of horse serum enhanced both the number of calbindin-positive neurons and the intensity of the immunostaining, but does not prevent the decline of the subpopulation of calbindin-immunoreactive neurons during the second week of culture; on the contrary, the addition of muscular extract to cultures at 10 days maintained the number of calbindin-expressing neurons. While calbindin-immunoreactive cell bodies grown in culture were small- or medium-sized, no correlation was found between cell size and immunostaining density. At the ultrastructural level, the calbindin immunoreaction was distributed throughout the neuroplasm. These results indicate that the expression of calbindin by sensory neurons grown in vitro may be modulated by horse serum-contained factors or interaction with non-neuronal cells. As distinct from horse serum, muscular extract is able to maintain the expression of calbindin by a subpopulation of DRG cells.
Resumo:
We evaluated the ability of a PCR assay to identify Mycobacterium tuberculosis complex (MTBC) from positive BACTEC® 12B broth cultures. A total of 107 sputum samples were processed and inoculated into Ogawa slants and BACTEC® 12B vials. At a growth index (GI) > 30, 1.0 ml of the 12B broth was removed, stored, and assayed with PCR. Molecular results were compared to those obtained by phenotypic identification methods, including the BACTEC® NAP method. The average times required to perform PCR and NAP were compared. Of the 107 broth cultures evaluated, 90 were NAP positive, while 91 were PCR positive for MTBC. Of particular interest were three contaminated BACTEC® 12B broth cultures yielding microorganisms other than acid-fast bacilli growth with a MTBC that were successfully identified by PCR, resulting in a mean time of 14 days to identify MTBC before NAP identification. These results suggest that PCR could be used as an alternative to the NAP test for the rapid identification of MTBC in BACTEC® 12B cultures, particularly in those that contained both MTBC and nontuberculous mycobacteria.
Resumo:
BACKGROUND: Methylmalonic aciduria is an inborn error of metabolism characterized by accumulation of methylmalonate (MMA), propionate and 2-methylcitrate (2-MCA) in body fluids. Early diagnosis and current treatment strategies aimed at limiting the production of these metabolites are only partially effective in preventing neurological damage. METHODS: To explore the metabolic consequences of methylmalonic aciduria on the brain, we used 3D organotypic brain cell cultures from rat embryos. We challenged the cultures at two different developmental stages with 1 mM MMA, propionate or 2-MCA applied 6 times every 12 h. In a dose-response experiment cultures were challenged with 0.01, 0.1, 0.33 and 1 mM 2-MCA. Immunohistochemical staining for different brain cell markers were used to assess cell viability, morphology and differentiation. Significant changes were validated by western blot analysis. Biochemical markers were analyzed in culture media. Apoptosis was studied by immunofluorescence staining and western blots for activated caspase-3. RESULTS: Among the three metabolites tested, 2-MCA consistently produced the most pronounced effects. Exposure to 2-MCA caused morphological changes in neuronal and glial cells already at 0.01 mM. At the biochemical level the most striking result was a significant ammonium increase in culture media with a concomitant glutamine decrease. Dose-response studies showed significant and parallel changes of ammonium and glutamine starting from 0.1 mM 2-MCA. An increased apoptosis rate was observed by activation of caspase-3 after exposure to at least 0.1 mM 2-MCA. CONCLUSION: Surprisingly, 2-MCA, and not MMA, seems to be the most toxic metabolite in our in vitro model leading to delayed axonal growth, apoptosis of glial cells and to unexpected ammonium increase. Morphological changes were already observed at 2-MCA concentrations as low as 0.01 mM. Increased apoptosis and ammonium accumulation started at 0.1 mM thus suggesting that ammonium accumulation is secondary to cell suffering and/or cell death. Local accumulation of ammonium in CNS, that may remain undetected in plasma and urine, may therefore play a key role in the neuropathogenesis of methylmalonic aciduria both during acute decompensations and in chronic phases. If confirmed in vivo, this finding might shift the current paradigm and result in novel therapeutic strategies.
Resumo:
The ATP- and pyrophosphate-dependent proton pumps from tonoplast-enriched vesicles prepared from Rubus hispidus cell cultures were solubilized in the presence of polyoxyethylene(9,10)p-t-octylphenol (Triton X-100) and reconstituted into liposomes of soybean phospholipids, using Bio-Beads SM-2 to remove the detergent. The specific activity of the two pumps was greatly increased by the solubilization-reconstitution procedure. Identical characteristics were found for pyrophosphate-dependent proton transport in native and reconstituted vesicles. On the other hand, the ATP-dependent proton transport of the reconstituted vesicles was no longer inhibited by KNO3.
Resumo:
The hydrolytic subunit of the H+-translocating inorganic pyrophosphatase (V-PPase EC 3.6.1.1.) prepared from Rubus hispidus cell cultures has been purified from tonoplast-enriched membranes and analysed by SDS-polyacrylamide gel electrophoresis, Only one polypeptide of M(r) 70 000 was recovered with the V-PPase activity after solubilization in the presence of Triton X-100, purification by gel filtration (Superose) and anion exchange (Mono Q) chromatography. This polypeptide strongly cross-reacted with an antibody raised against the V-PPase from Vigna radiata. The tonoplast-enriched fraction was also used to solubilize and reconstitute the-V-PPase. The proteoliposomes showing a PPi-dependent proton transport activity were purified by gel filtration (Superose) and analysed by SDS-polyacrylamide gel electrophoresis. Only one polypeptide of M(r) 70 000 was recovered with the proton-pumping activity. All these data suggest that the native V-PPase from Rubus is composed of a single kind of polypeptide with an M(r) of 70 000 and representing the catalytic subunit.
Resumo:
Despite the widespread use of Cannabis as recreational drug or as medicine, little is known about its toxicity. The accumulation, metabolism and toxicity of THC were analyzed 10 days after a single treatment, and after repeated exposures during 10 days. Mixed-cell aggregate cultures of fetal rat telencephalon were used as in vitro model, as well as aggregates enriched either in neurons or in glial cells. It was found that THC accumulated preferentially in neurons, and that glia-neuron interactions decreased THC accumulation. The quantification of 11-OH-THC and of THC-COOH showed that brain aggregates were capable of THC metabolism. No cell-type difference was found for the metabolite 11-OH-THC, whereas the THC-COOH content was higher in mixed-cell cultures. No cell death was found at THC concentrations of 2 microM in single treatment and of 1 microM and 2 microM in repeated treatments. Neurons, and particularly GABAergic neurons, were most sensitive to THC. Only the GABAergic marker was affected after the single treatment, whereas the GABAergic, cholinergic and astrocytic markers were decreased after the repeated treatments. JWH 015, a CB2 receptor agonist, showed effects similar to THC, whereas ACEA, a CB1 receptor agonist, had no effect. The expression of the cytokine IL-6 was upregulated 48 h after the single treatment with 5 microM of THC or JWH 015, whereas the expression of TNF-alpha remained unchanged. These results suggest that the adverse effects of THC were related either to THC accumulation or to cannabinoid receptor activation and associated with IL-6 upregulation.
Resumo:
The plasticity of mature oligodendrocytes was studied in aggregating brain cell cultures at the period of maximal expression of myelin marker proteins. The protein kinase C (PKC)-activating tumor promoters mezerein and phorbol 12-myristate 13-acetate (PMA), but not the inactive phorbol ester analog 4alpha-PMA, caused a pronounced decrease of myelin basic protein (MBP) content and 2',3'-cyclic nucleotide 3'-phosphohydrolase (CNP) activity. In contrast, myelin/oligodendrocyte protein (MOG) content was affected relatively little. Northern blot analyses showed a rapid reduction of MBP and PLP gene expression induced by mezerein, and both morphological and biochemical findings indicate a drastic loss of compact myelin. During the acute phase of demyelination, only a relatively small increase in cell death was perceptible by in situ end labeling and in situ nick translation. Basic fibroblast growth factor (bFGF) also reduced the levels of the oligodendroglial differentiation markers and enhanced the demyelinating effects of the tumor promoters. The present results suggest that PKC activation resulted in severe demyelination and partial loss of the oligodendrocyte-differentiated phenotype.
Resumo:
La créatine joue un rôle essentiel dans le métabolisme cellulaire par sa conversion, par la creatine kinase, en phosphocreatine permettant la régénération de l'ATP. La synthèse de créatine, chez les mammifères, s'effectue par une réaction en deux étapes impliquant Γ arginine: glycine amidinotransférase (AGAT) et la guanidinoacétate méthyltransférase (GAMT). L'entrée de créatine dans les cellules s'effectue par son transporteur, SLC6A8. Les déficiences en créatine, dues au déficit en GAMT, AGAT ou SLC6A8, sont fréquentes et caractérisées par une absence ou une forte baisse de créatine dans le système nerveux central. Alors qu'il est connu que AGAT, GAMT et SLC6A8 sont exprimés par le cerveau, les conséquences des déficiences en créatine sur les cellules nerveuses sont peu comprises. Le but de ce travail était de développer de nouveaux modèles expérimentaux des déficiences en Cr dans des cultures 3D de cellules nerveuses de rat en agrégats au moyen de l'interférence à l'ARN appliquée aux gènes GAMT et SLC6A8. Des séquences interférentes (shRNAs) pour les gènes GAMT et SLC6A8 ont été transduites par des vecteurs viraux AAV (virus adéno-associés), dans les cellules nerveuses en agrégats. Nous avons ainsi démontré une baisse de l'expression de GAMT au niveau protéique (mesuré par western blot), et ARN messager (mesuré par qPCR) ainsi qu'une variation caractérisitique de créatine et guanidinoacétate (mesuré par spectrométrie de masse). Après avoir validé nos modèles, nous avons montré que les knockdown de GAMT ou SLC6A8 affectent le développement des astrocytes et des neurones ou des oligodendrocytes et des astrocytes, respectivement, ainsi qu'une augmentation de la mort cellulaire et des modifications dans le pattern d'activation des voies de signalisation impliquant caspase 3 et p38 MAPK, ayant un rôle dans le processus d'apoptose. - Creatine plays essential roles in energy metabolism by the interconversion, by creatine kinase, to its phosphorylated analogue, phosphocreatine, allowing the regeneration of ATP. Creatine is synthesized in mammals by a two step mechanism involving arginine:glycine amidinotransferase (AGAT) and guanidinoacetate methyltransferase (GAMT). Creatine is taken up by cells by a specific transporter, SLC6A8. Creatine deficiency syndromes, due to defects in GAMT, AGAT and SLC6A8, are among the most frequent inborn errors of metabolism, and are characterized by an absence or a severe decrease of creatine in central nervous system, which is the main tissue affected. While it is known that AGAT, GAMT and SLC6A8 are expressed in CNS, many questions remain on the specific effects of AGAT, GAMT and SLC6A8 deficiencies on brain cells. Our aim was to develop new experimental models of creatine deficiencies by knockdown of GAMT and SLC6A8 genes by RNAi in 3D organotypic rat brain cell cultures in aggregates. Specific shRNAs for the GAMT and SLC6A8 genes were transduced in brain cell aggregates by adeno-associated viruses (AAV). The AAV-transduced shRNAs were able to efficiently knockdown the expression of our genes of interest, as shown by a strong decrease of protein by western blotting, a decrease of mRNA by qPCR or characteristic variations of creatine and guanidinoacetate by tandem mass spectrometry. After having validated our experimental models, we have also shown that GAMT and SLC6A8 knockdown affected the development of astrocytes and neurons or oligodendrocytes and astrocytes, respectively. We also observed an increase of cell death and variations in activation pattern of caspase 3 and p38 MAPK pathways, involved in apoptosis, in our experimental model.