918 resultados para HIGH PRESSURE
Resumo:
Perovskite oxides LaTi1-xMgxO3 (x = 0.25, 0.5) were synthesized using high-pressure and-temperature method. LaTi0.75Mg0.25O3 is a new compound. This new synthesis route has some advantages. XRD analysis showed that the x = 0.25 sample belongs to cubic perovskite-type structure and the a = 0.5 sample belongs to orthorhombic perovskite-type structure. EPR measurement indicated that Ti ions were in mixed valence state of +3 and +4. IR measurement indicated that the vibration frequency and width of BO6 octahedron stretching vibration absorption band decreases with the increasing of x. The valence state of Ti ions can be altered by high-pressure and-temperature. (C) 2000 Elsevier Science S.A. All rights reserved.
Reaction and formation of crystalline silicon oxynitride in Si-O-N systems under solid high pressure
Resumo:
Oxidized amorphous Si3N4 and SiO2 powders were pressed alone or as a mixture under high pressure (1.0-5.0 GPa) at high temperatures (800-1700 degreesC). Formation of crystalline silicon oxynitride (Si(2ON)2) was observed from amorphous silicon nitride (Si3N4) powders containing 5.8 wt% oxygen at 1.0 GPa and 1400 degreesC, The Si2ON2 coexisted with beta -Si3N4 with a weight fraction of 40 wt%, suggesting that all oxygen in the powders participated in the reaction to form Si2ON2. Pressing a mixture of amorphous Si3N4 of lower oxygen (1.5 wt%) and SiO2 under 1.0-5.0 GPa between 1000 degrees and 1350 degreesC did not give Si2ON2 phase, but yielded a mixture of alpha,beta -Si3N4, quartz, and coesite (a high-pressure form of SiO2). The formation of Si2ON2, from oxidized amorphous Si3N4 seemed to be assisted by formation of a Si-O-N melt in the system that was enhanced under the high pressure.
Resumo:
The crystallization and phase transformation of amorphous Si3N4 ceramics under high pressure (1.0-5.0 GPa) between 800 and 1700 degreesC were investigated. A greatly enhanced crystallization and alpha-beta transformation of the amorphous Si3N4 ceramics were evident under the high pressure, as characterized by that, at 5.0 GPa, the amorphous Si3N4, began to crystallize at a temperature as low as 1000 degreesC (to transform to alpha modification). The subsequent alpha-beta transformation occurred completed between 1350 and 1420 degreesC after only 20 min of pressing at 5.0 GPa. In contrast, under 0.1 MPa N-2, the identical amorphous materials were stable up to 1400 degreesC without detectable crystallization, and only a small amount of a phase was detected at 1500 degreesC. The crystallization temperature and the alpha-beta transformation temperatures are reduced by 200-350 degreesC compared to that at normal pressure. The enhanced phase transformations of the amorphous Si3N4, were discussed on the basis of thermodynamic and kinetic consideration of the effects of pressure on nucleation and growth.
Resumo:
A high pressure and high temperature method was used to efficiently extract on a large scale metallofullerenes M@C-2n (M=La,Ce) in a closed vessel under argon gas protection. With pyridine as the HPHT solvent, about 60-80% M@C-2n and 30-55% M@C-82 can be enriched, M@C-82 is dissolved selectively; With toluene as the HPHT solvent, M@C-2n can also be efficiently extracted, especially M@C-74, which is a new member of M@C-2n soluble species. (C) 1998 Elsevier Science Ltd. All rights reserved.
Resumo:
The traditional Soxhlet extraction of lanthanofullerenes was improved and the high temperature and high pressure method with different extraction solvents was used. It's found that La@C-2n can be efficiently extracted with toluene and pyridine from the insoluble part of the soot after the toluene Soxhlet extraction. Pyridine can more efficiently and selectively extract lanthofullerenes, especially La@C-82, while toluene can extract La@C-74, which is a new member added to the soluble species to lanthanofullerenes.
Resumo:
High-pressure synthesis of garnet Gd3In2Ga3O12 is reported. It was found that the pressure-temperature region for the synthesis of Gd3In2Ga3O12 can be expressed as T(degrees C) < 2350-250P(GPa), and high pressure greatly reduced the reaction time. It was also found that the garnet Gd3In2Ga3O12 decomposed to GdGaO3 and In2O3 under 3.5 GPa and 1650 degrees C, and this process was accompanied by an increasing density of the products and an increasing coordination number for Ga3+ (4 to 6).
Resumo:
A high-temperature, high-pressure extraction technique with toluene and pyridine were employed for the extraction of metallofullerenes Gd@C-2n, A series of Gd@C-2n for 2n from 70 to 96 were effectively extracted by toluene. Gd@C-74 was shown to be a new stable soluble metallofullerene species. Pyridine was found to be more useful for the extraction of Gd@C-82 and Gd-2@C-80 from empty fullerenes and other metallofullerene species.
Resumo:
P wave velocity of the pumice sample from the middle Okinawa Trough and andesite sample from vicinity Yingdao volcanic island, Kyushu Japan were measured at temperature (from room temperature to 1500 C) and pressure (from room pressure to 2.4GPa) using a multi-anvil pressure apparatus called the YJ-3000 press. The measured data shows that at low temperature and low pressure (<1GPa, <800degreesC), the P wave velocity of pumice is lower than that of andesite, while at high temperature and high pressure (>1GPa, >800degreesC) the P wave velocity of pumice and andesite. becomes consistent (5.9km/s). The paper points out that 1GPa/800degreesC is the point of thermodynamic phase transformation Okinawa Trough pumice and vicinity andesite, and the point is deeper than 18km.
Resumo:
National Science Foundation of China (No. 10032040 and No. 49874013) and Joint Earthquake Science Foundation of China (No. 101119).
Resumo:
This paper shows preliminary results of research into the occurrence of strong anticyclonic systems that influenced the weather in Poland during the period 1971–2000. The study was based on NCEP/NCAR reanalysis data, including daily values of the 1000 and 500 hPa geopotential heights, maps of mentioned geopotential heights and maps of sea-level field pressure. With the use of these data a number of exceptionally strong high-pressure systems were identified, together with their areas of origin and subsequent development patterns. They were then broken down into five groups with similar dynamics. The numbers of systems in each group were not found to follow any significant change trends in the long term. The greatest differences between groups were identified in terms of their annual occurrence rates and centre pressure values.
Resumo:
Abyssal benthic foraminifera have been maintained alive for periods of several weeks under laboratory simulated deep-sea conditions of high pressure and low temperature. In separate experiments, bacterial-sized fluorescent microspheres and three species of microalgae were supplied as food particles. Subsequent light and electron microscopy showed that the algae had been ingested by several foraminiferal species. Furthermore, the fine structure of the foraminiferal cytoplasm was well-preserved which indicates, along with the ingestion of algal food, that they had remained in a viable condition during the incubation. Other observations indicate that abyssal benthic foraminifera ingest naturally occurring photosynthetic cells carried to the deep-sea bed by rapidly sedimenting aggregates. The ability to keep foraminifera originating from depths exceeding 4000 m alive in the laboratory paves the way for the experimental investigation of some important issues in deep-sea biology and palaeoceanography.