645 resultados para Guarany aquifer
Resumo:
The Sherwood Sandstone Group forms an important aquifer in Eastern England, which in North Nottinghamshire comprises the Nottingham Castle and Lenton Sandstone Formations. The aquifer is formed by an alluvial red-bed sequence dominated by medium-coarse grained sandstones which are texturally immature to submature and have only been subjected to shallow burial diagenesis. These sandstones reached the mature stage of the meso diagenetic regime, and four stages are recognized in their diagenetic history depending upon the physical/chemical processes prevailing and the subsequent effect on porosity and permeability. Stage "One" represents changes including dissolution of unstable silicates, clay replacement, red colouration and precipitation of authigenic minerals (quartz, feldspar, illite, l/S, kaolinite, dolomite, ferroan calcite, calcite). The net result of these changes was porosity reduction. Stage "Two" included changes due to mechanical compaction which resulted in minor porosity reduction. Stage "Three" was the main phase of secondary porosity enhancement. Stage "Four" represents changes taking place in the present groundwater where porosity and permeability may have been increased by dissolution and partly reduced by kaolinite precipitation. Porosity measured by water-resaturation and Hg-injection gave average values of 25.63% and 24.85% respectively. The results are comparable and showed marked correlation especially in highly porous/permeable rocks. Porosity measurements from photomicrographs were markedly offset from laboratory results. Horizontal Kw ranged between 1.43 x 10-5 and 1.13 x 10-1 mm/sec, with an average of 1.68 x 10-2 mm/sec. The estimated KHg ranged between 7.29 x 10-6 and 6.99 x 10-2 mm/sec with an average of 1.47 x 10-2 mm/sec. Both results are significantly correlated for highly porous/permeable rocks. The hydraulic properties are highly dependent upon the diagenetic properties (as most of the pores present are of secondary origin) as well as the pore size distribution. The chemistry of these groundwaters indicates that they are under-saturated with respect to dolomite, calcite, K-feldspar, l/S clay, and montmorillonite. The precipitation of kaolinite,and to a lesser extent illite, is favoured in the present groundwater regime.
Resumo:
Geochemical and geophysical approaches have been used to investigate the freshwater and saltwater dynamics in the coastal Biscayne Aquifer and Biscayne Bay. Stable isotopes of oxygen and hydrogen, and concentrations of Sr2+ and Ca2+ were combined in two geochemical mixing models to provide estimates of the various freshwater inputs (precipitation, canal water, and groundwater) to Biscayne Bay and the coastal canal system in South Florida. Shallow geophysical electromagnetic and direct current resistivity surveys were used to image the geometry and stratification of the saltwater mixing zone in the near coastal (less than 1km inland) Biscayne Aquifer. The combined stable isotope and trace metal models suggest a ratio of canal input-precipitation-groundwater of 38%–52%–10% in the wet season and 37%–58%–5% in the dry season with an error of 25%, where most (20%) of the error was attributed to the isotope regression model, while the remaining 5% error was attributed to the Sr2+/Ca2+ mixing model. These models suggest rainfall is the dominate source of freshwater to Biscayne Bay. For a bay-wide water budget that includes saltwater and freshwater mixing, fresh groundwater accounts for less than 2% of the total input. A similar Sr 2+/Ca2+ tracer model indicates precipitation is the dominate source in 9 out of 10 canals that discharge into Biscayne Bay. The two-component mixing model converged for 100% of the freshwater canal samples in this study with 63% of the water contributed to the canals coming from precipitation and 37% from groundwater inputs ±4%. There was a seasonal shift from 63% precipitation input in the dry season to 55% precipitation input in the wet season. The three end-member mixing model converged for only 60% of the saline canal samples possibly due to non-conservative behavior of Sr2+ and Ca2+ in saline groundwater discharging into the canal system. Electromagnetic and Direct Current resistivity surveys were successful at locating and estimating the geometry and depth of the freshwater/saltwater interface in the Biscayne Aquifer at two near coastal sites. A saltwater interface that deepened as the survey moved inland was detected with a maximum interpreted depth to the interface of 15 meters, approximately 0.33 km inland from the shoreline. ^
Resumo:
A hydrodynamic threshold between Darcian and non-Darcian flow conditions was found to occur in cubes of Key Largo Limestone from Florida, USA (one cube measuring 0.2 m on each side, the other 0.3 m) at an effective porosity of 33% and a hydraulic conductivity of 10 m/day. Below these values, flow was laminar and could be described as Darcian. Above these values, hydraulic conductivity increased greatly and flow was non-laminar. Reynolds numbers (Re) for these experiments ranged from
Resumo:
Deep well injection into non-potable saline aquifers of treated domestic wastewater has been used in Florida for decades as a safe and effective alternative to ocean outfall disposal. The objectives of this study were to determine the fate and transport of injected wastewater at two deep well injection sites in Miami Dade County, Florida, USA. Detection of ammonium in the Middle Confining units of the Floridan aquifer above the injection zone at both sites has been interpreted as evidence of upward migration of injected wastewater, posing a risk to underground sources of drinking water. Historical water quality data, including ammonia, chloride, temperature, and pH from existing monitoring wells at both sites from 1983 to 2008, major ions collected monthly from 2006 and 2008, and a synoptic sampling event for stable isotopes, tritium, and dissolved gases in 2008, were used to determine the source of ammonium in groundwater and possible migration pathways. Geochemical modeling was used to determine possible effects of injected wastewater on native water and aquifer matrix geochemistry. Injected wastewater was determined to be the source of elevated ammonium concentrations above ambient water levels, based on the results of major ion concentrations, tritium, dissolved noble gases and 15N isotopes analyses. Various possible fluid migration pathways were identified at the sites. Data for the south site suggest buoyancy-driven vertical pathways to overlying aquifers bypassing the confining units, with little mixing of injected wastewater with native water as it migrated upward. Once it is introduced into an aquifer, the injectate appeared to migrate advectively with the regional groundwater flow. Geochemical modeling indicated that CO 2-enriched injected wastewater allowed for carbonate dissolution along the vertical pathways, enhancing permeability along these flowpaths. At the north site, diffusive upward flow through the confining units or offsite vertical pathways were determined to be possible, however no evidence was detected for any on-site confining unit bypass pathway. No evidence was observed at either site of injected wastewater migration to the Upper Floridan aquifer, which is used as a municipal water supply and for aquifer storage and recovery.
Resumo:
Two deep-well injection sites in south Florida, USA, inject an average of 430 million liters per day (MLD) of treated domestic fresh wastewater into a deep saline aquifer 900 m below land surface. Elevated levels of NH3 (highest concentration 939 µmol) in the overlying aquifer above ambient concentrations (concentration less than 30 µmol) were evidence of the upward migration of injected fluids. Three pathways were distinguished based on ammonium, chloride and bromide ratios, and temperature. At the South District Wastewater Treatment Plant, the tracer ratios showed that the injectate remained chemically distinct as it migrated upwards through rapid vertical pathways via density-driven buoyancy. The warmer injectate (mean 28°C) retained the temperature signal as it vertically migrated upwards; however, the temperature signal did not persist as the injectate moved horizontally into the overlying aquifers. Once introduced, the injectate moved slowly horizontally through the aquifer and mixed with ambient water. At the North District Wastewater Treatment Plant, data provide strong evidence of a one-time pulse of injectate into the overlying aquifers due to improper well construction. No evidence of rapid vertical pathways was observed at the North District Wastewater Treatment Plant.
Resumo:
The anisotropy of the Biscayne Aquifer which serves as the source of potable water for Miami-Dade County was investigated by applying geophysical methods. Electrical resistivity imaging, self potential and ground penetration radar techniques were employed in both regional and site specific studies. In the regional study, electrical anisotropy and resistivity variation with depth were investigated with azimuthal square array measurements at 13 sites. The observed coefficient of electrical anisotropy ranged from 1.01 to 1.36. The general direction of measured anisotropy is uniform for most sites and trends W-E or SE-NW irrespective of depth. Measured electrical properties were used to estimate anisotropic component of the secondary porosity and hydraulic anisotropy which ranged from 1 to 11% and 1.18 to 2.83 respectively. 1-D sounding analysis was used to models the variation of formation resistivity with depth. Resistivities decreased from NW (close to the margins of the everglades) to SE on the shores of Biscayne Bay. Porosity calculated from Archie's law, ranged from 18 to 61% with higher values found along the ridge. Higher anisotropy, porosities and hydraulic conductivities were on the Atlantic Coastal Ridge and lower values at low lying areas west of the ridge. The cause of higher anisotropy and porosity is attributed to higher dissolution rates of the oolitic facies of the Miami Formation composing the ridge. The direction of minimum resistivity from this study is similar to the predevelopment groundwater flow direction indicated in published modeling studies. Detailed investigations were carried out to evaluate higher anisotropy at West Perrine Park located on the ridge and Snapper Creek Municipal well field where the anisotropy trend changes with depth. The higher anisotropy is attributed to the presence of solution cavities oriented in the E-SE direction on the ridge. Similarly, the change in hydraulic anisotropy at the well field might be related to solution cavities, the surface canal and groundwater extraction wells.^
Resumo:
The hydrochemistry and the microbial diversity of a pristine aquifer system near Garzweiler, Germany next to the open-pit lignite mine Garzweiler 1, were characterized. Hydrogeochemical and isotopic data indicate a recent activity of sulfate-reducing bacteria in the Tertiary marine sands. The community structure in the aquifer was studied by fluorescence in situ hybridization (FISH). Up to 7.3 x 10**5 cells/ml were detected by DAPIstaining. Bacteria (identified by the probe EUB338) were dominant, representing 51.9% of the total cell number (DAPI). Another 25.7% of total cell were affiliated with the domain Archaea as identified by the probe ARCH915. Within the domain Bacteria, the beta-Proteobacteria were most abundant (21.0% of total cell counts). Using genusspecific probes for sulfate-reducing bacteria (SRB), 2.5% of the total cells were identified as members of the genus Desulfotomaculum. This reflects the predominant role these microorganisms have been found to play in sulfatereducing zones of aquifers at other sites. Previously, all SRB cultured from this site were from the spore-forming genera Desulfotomaculum and Desulfosporosinus. Samples were taken after pumping for >= 40 min and after parameters such as temperature, pH, redox potential, oxygen and conductivity of the groundwater had remained stable for >= 15 min due to recharge of aquifer water. Hybridization and microscopy counts of hybridized and 4',6'-diamidino-2-phenylindole (DAPI)- stained cells were performed as described in Snaidr et al., (1997, http://aem.asm.org/content/63/7/2884.full.pdf). Means were calculated from 10 to 20 randomly chosen fields on each filter section, corresponding to 800-1000 DAPI stained cells. Counting results were always corrected by subtracting signals observed with the probe NON338. Formamide concentrations and oligonucleotide probes used please see further details.
Resumo:
Water constitutes the basic resource for life. Management of coastal aquifers, which are the important sources of freshwater that feed the rapid economic growth of the region is facing increasing challenges. A large portion of the global population inhabits the coastal and adjoining areas leading to a high demand for water both surface and ground water resources of coastal tracts. With increasing population this puts significant stress on water resources of many of the coastal tracts of the world. Several recent studies have indicated that coastal aquifers of Cenozoic age are globally under threat due to several reasons. Climate change is expected to affect the freshwater resources of coastal aquifers, which in turn will affect half of the global population residing in coastal areas. Sea-level rise will induce landward migration of the freshwater-saltwater transition zone, i.e., seawater or saltwater intrusion, jeopardizing freshwater availability. In order to facilitate the management of fresh coastal groundwater resources, a comprehensive understanding of the SLR-SWI relationship is crucial.
Resumo:
[EN]Rn has been detected in 28 groundwater samples from the northeast of Gran Canaria (Canary Islands, Spain) utilizing a closed loop system consisting of an AlphaGUARD monitor that measures radon activity concentration in the air by means of an ionization chamber, and an AquaKIT set that transfers dissolved radon in the water samples to the air within the circuit. Radon concentration in the water samples studied varies between 0.3 and 76.9 Bq/L. Spanish radiological protection regulations limit the concentration of 222Rn for drinking water to 100 Bq/L, therefore the values obtained for all the analyzed samples are below this threshold. The hydrogeological study reveals a significant correspondence between the radon activity concentration and the material characteristics of the aquifer.
Resumo:
[EN]The chloride mass balance method was used to estimate the average diffuse groundwater recharge on northeastern Gran Canaria (Canary Islands), where the largest recharge to the volcanic island aquifer occurs. Rainwater was sampled monthly in ten rainwater collectors to determine the bulk deposition rate of chloride for the 2008–2014 period. Average chloride deposition decreases inwardly from more than 10 g·m−2 ·year−1 to about 4 g·m−2 ·year−1 . The application of the chloride mass balance method resulted in an estimated average recharge of about 28 hm3 /year or 92 mm/year (24% of precipitation) in the study area after subtracting chloride loss with surface runoff.