940 resultados para Growth process
Resumo:
Innovation policies play an important role throughout the development process of emerging industries. However, existing policy studies view the process as a black-box, and fail to understand the policy-industry interactions through the process. This paper aims to develop an integrated technology roadmapping tool, in order to facilitate the better understanding of policy heterogeneity at the different stages of new energy industries in China. Through the case study of Chinese wind energy equipment manufacturing industry, this paper elaborates the dynamics between policy and the growth process of the industry. Further, this paper generalizes some Chinese specifics for the policy-industry interactions. As a practical output, this study proposes a policy-technology roadmapping framework that maps policy-market-product- technology interactions in response to the requirement for analyzing and planning the development of new industries in emerging economies (e.g. China). This paper will be of interest to policy makers, strategists, investors, and industrial experts. © 2011 IEEE.
Resumo:
Spined loach, Cobitis taenia, is a predominant fish in the river systems of the southern Caspian Sea basin. Although there is evidence of the geographical divergence of this taxon, but no information is available on morphological differences within the species populations. This study was designed to evaluate some biological factors including; morphometric and meristic characters, length-weight, age-growth, condition factor, diet, reproduction, variation and differentiation, in the Babolrud, Talar and Siahrud Rivers in south of the Caspian Sea basin. Age, sex ratio, fecundity, ova diameter and gonadosomatic index were estimated. Also, regression analyses was tested the relation between fecundity and fish length, weight, gonad weight, and also age. Totally 858 fish of which 721 were matures, were collected from these rivers by electrofishing. 37 morphometric characters, 9 meristic characters and 78 truss network system characters were estimated. Resulats of DFA analysis based on data of morphometric and meristic showd that these populations are highly (94.5%) varios from each other. In discriminate function analysis, the proportion of individuals correctly classified into their original groups was 61%, 65.4% and 86.5% for upstream and downstream, respectively. Clustering based on Euclidean distances among groups of centroids using an UPGMA and also principal component analysis’ results for morphometric data indicated that these populations from these three rivers were clearly distinct from each other. Regression equations between length and weight in these three populations were significantly different from Folton factor (b=3), that showed the fish has a negative Alometric growth process. Condition factor was estimated between 0.8912 to 1.2736 and 0.8131 to 1.4489 for males and females, respectively. Sex ratio (female: male) in these populations was 1.2816:1. The difference between the number of females and males was significant and females were more than males. The female and male specimens reach maturity by Tl more than 40 and 30 mm and at the age of 2+ and 1+, respectively. The mean of ova diameter was 0.5824±0.2882. The spawning took place from May to late July, at the water temperature from 18.7 to 24.0°C. The GSI values average at the beginning of the reproduction period was about 9%, with ranged from 2 to 26% in ripe mature females. The absolute and relative fecundity were 2109±792 and 579±208 respectively. The absolute fecundity was significantly related to body weight and gonads weight. Based on the pattern of gonado-somatic index, it was concluded that this fish has prolong active reproductive period, which is a type of adaptation by short-lived small fishes to environmental conditions. The macroscopic and histological results showed that the female and male have 5 and 4 stages in their maturation process, respectively. The RLG index was about 0.4732, which showed the fish is a carnivorous species. Significant difference was observed between fishes with different length and diet. The main foods of the fish were Trichoptera, Chironomidae larvae and Ephemeroptera which were their prefered food as well, however it was estimated that the food selection and diet are affected by environmental conditions.
Resumo:
The paper deals with the spawning cycle of the hake, Merluccius merluccius hubbsi in the fishing area of the Argentine fleet, SW Atlantic (35°- 46° L. S.: 53°- 63° L.W.; 30-160 fathoms depth). It was made on the basis of the weekly sampling of the commercial catch in the period January 1965 - March 1968. The results have been compared with those of the exploratory surveys made by the United Nations Fisheries Development Program (República Argentina - FAO). The histological study, which was made with 741 specimens, was most intensive in females than in males. The results have been compared with the sexual stage determinations of both sexes in the total samples during the period before mentioned. The conclusions are: 1. The analysis of the ovocytes frequency distributions showed a period of resting or slow recuperation (April - August) with a mode of 120 ~k and one of rapid transformation (October - December) from 120 μ tíll 830 ~k. After December it appears again the mode of 120 ~k which indicated the reserve stock. 2. The maturity factor shows in both sexes a period of low values , 0,52 to 2% (April - September) and, another with higher values (October - March). In the first period the values are concentrated, while in the second one a large dispersion is observed produced by the rapidity of the growth process of the gonads. It is more evident between November and December. 3. The liver weight variations, compared with the degree of ingestion and the values of the maturity factor, in time, demonstrated that: a) after two periods of abundant ingestion (March - April and October- November) there are two increases of the liver index; b) the increase of the Iiver index has a direct relation to the maturity factor; c) at the end of the summer season, when the values of the maturity factor decrease, those of the liver index are still high. This demonstrates that the hake does not arrive exhausted at the end of the spawning season and that a rapid recuperation for a new spawning by part of the stock is possible. 4. Females predominate in the samples during most of the year. In the period October - December, when sexual activation occurs, as it is demonstrated by the high values of the maturity factor, proportions are nearly 1 :1, and males at times are more numerous than females. 5. The analisys of the advaneed maturity stages, in relation to total length shows that in the hake, Iike in other fishes, the largest ones mature first. This applies for both sexes. 6. The study of the maturity factor values and the sexual stages of the samples allows the recognition of two spawning periods, the main one in summer (October - March) and another in winter (June - July). 7. Part of the summer spawners, with a rapid recuperation, should be able to spawn again in winter. This indicates that the hake population, acording to our samples, has two different possibilities of spawning. 8. After analysis of the frequency percentages composition of mature specimens it is concluded that during the summer season, when hake is fished in shallow waters and in a wide area (38°– 43° L.S.) the fleet is fishing on the spawning stocks. Some winter spawners specimens have been found at 37°- 38° L.S. and in waters of more than 100 fathoms depth. 9. A new maturity scale of seven stages is proposed, instead of the one of six stages now in use. The new added stage corresponds to the postspawners during its resting period.
Resumo:
We demonstrate the growth of multi wall and single wall carbon nanotubes (CNT) onto substrates containing commercial 1-m CMOS integrated circuits. The low substrate temperature growth (450°C) was achieved by using hot filament (1000 °C) to preheat the source gases (C 2H 2 and NH 3) and in situ mass spe-ctroscopy was used to identify the gas species present. Field effect transistors based on Single Walled Carbon Nanotube (SWNT) grown under such conditions were fabricated and examined. CNT growth was performed directly on the passivation layer of the CMOS integrated circuits. Individual n- and p-type CMOS transistors were compared before and after CNT growth. The transistors survive and operate after the CNT growth process, although small degradations are observed in the output current (for p-transistors) and leakage current (for both p- and n-type transistors). © 2010 IEEE.
Resumo:
Single grain, (RE)BCO bulk superconductors in large or complicated geometries are required for a variety of potential applications, such as motors and generators and magnetic shielding devices. As a result, top, multi-seeded, melt growth (TMSMG) has been investigated over the past two years in an attempt to enlarge the size of (RE)BCO single grains specifically for such applications. Of these multi-seeding techniques, so-called bridge seeding provides the best alignment of two seeds in a single grain growth process. Here we report, for the first time, the successful growth of YBCO using a special, 45{\deg} - 45{\deg}, arrangement of bridge-seeds. The superconducting properties, including trapped field, of the multi-seeded YBCO grains have been measured for different bridge lengths of the 45{\deg}- 45{\deg} bridge-seeds. The boundaries at the impinging growth front and the growth features of the top, multi-seeded surface and cross-section of the multi-seeded, samples have been analysed using optical microscopy. The results suggest that an impurity-free boundary between the two seeds of each leg of the bridge-seed can form when 45{\deg}- 45{\deg} bridge-seeds are used to enlarge the size of YBCO grains.
Resumo:
An infiltration and growth process is here used as an alternative to the classical top-seeded melt-textured growth process for the production of Dy-123 single-domains with finely dispersed small size Dy-211 particles. The starting materials are the 211-particles and a barium and copper rich liquid phase precursor. The infiltration and growth process allows for controlling both the spatial and size distribution of the 211-particles in the final superconducting 123-single-domain. The main parameters (set-ups, maximum processing temperature with respect to the peritectic temperature, nature of reactant, porosity of the 211-preform) of the infiltration and growth process are discussed. Moreover, different processes of chimie douce are shown in order to produce Dy-211 particles with controlled shape and size, particles that can be used as precursors for the infiltration and growth process. © 2005 IOP Publishing Ltd.
Resumo:
The efficiency of the injection and recombination processes in InGaN/GaN LEDs is governed by the properties of the active region of the devices, which strongly depend on the conditions used for the growth of the epitaxial material. To improve device quality, it is very important to understand how the high temperatures used during the growth process can modify the quality of the epitaxial material. With this paper we present a study of the modifications in the properties of InGaN/GaN LED structures induced by high temperature annealing: thermal stress tests were carried out at 900 °C, in nitrogen atmosphere, on selected samples. The efficiency and the recombination dynamics were evaluated by photoluminescence measurements (both integrated and time-resolved), while the properties of the epitaxial material were studied by Secondary Ion Mass Spectroscopy (SIMS) and Rutherford Backscattering (RBS) channeling measurements. Results indicate that exposure to high temperatures may lead to: (i) a significant increase in the photoluminescence efficiency of the devices; (ii) a decrease in the parasitic emission bands located between 380 nm and 400 nm; (iii) an increase in carrier lifetime, as detected by time-resolved photoluminescence measurements. The increase in device efficiency is tentatively ascribed to an improvement in the crystallographic quality of the samples. © 2013 SPIE.
Resumo:
In this article, we describe a simple method to reversibly tune the wetting properties of vertically aligned carbon nanotube (CNT) arrays. Here, CNT arrays are defined as densely packed multi-walled carbon nanotubes oriented perpendicular to the growth substrate as a result of a growth process by the standard thermal chemical vapor deposition (CVD) technique.(1,2) These CNT arrays are then exposed to vacuum annealing treatment to make them more hydrophobic or to dry oxidation treatment to render them more hydrophilic. The hydrophobic CNT arrays can be turned hydrophilic by exposing them to dry oxidation treatment, while the hydrophilic CNT arrays can be turned hydrophobic by exposing them to vacuum annealing treatment. Using a combination of both treatments, CNT arrays can be repeatedly switched between hydrophilic and hydrophobic.(2) Therefore, such combination show a very high potential in many industrial and consumer applications, including drug delivery system and high power density supercapacitors.(3-5) The key to vary the wettability of CNT arrays is to control the surface concentration of oxygen adsorbates. Basically oxygen adsorbates can be introduced by exposing the CNT arrays to any oxidation treatment. Here we use dry oxidation treatments, such as oxygen plasma and UV/ozone, to functionalize the surface of CNT with oxygenated functional groups. These oxygenated functional groups allow hydrogen bond between the surface of CNT and water molecules to form, rendering the CNT hydrophilic. To turn them hydrophobic, adsorbed oxygen must be removed from the surface of CNT. Here we employ vacuum annealing treatment to induce oxygen desorption process. CNT arrays with extremely low surface concentration of oxygen adsorbates exhibit a superhydrophobic behavior.
Resumo:
The ability to generate a permanent, stable magnetic field unsupported by an electromotive force is fundamental to a variety of engineering applications. Bulk high temperature superconducting (HTS) materials can trap magnetic fields of magnitude over ten times higher than the maximum field produced by conventional magnets, which is limited practically to rather less than 2 T. In this paper, two large c-axis oriented, single-grain YBCO and GdBCO bulk superconductors are magnetized by the pulsed field magnetization (PFM) technique at temperatures of 40 and 65 K and the characteristics of the resulting trapped field profile are investigated with a view of magnetizing such samples as trapped field magnets (TFMs) in situ inside a trapped flux-type superconducting electric machine. A comparison is made between the temperatures at which the pulsed magnetic field is applied and the results have strong implications for the optimum operating temperature for TFMs in trapped flux-type superconducting electric machines. The effects of inhomogeneities, which occur during the growth process of single-grain bulk superconductors, on the trapped field and maximum temperature rise in the sample are modelled numerically using a 3D finite-element model based on the H-formulation and implemented in Comsol Multiphysics 4.3a. The results agree qualitatively with the observed experimental results, in that inhomogeneities act to distort the trapped field profile and reduce the magnitude of the trapped field due to localized heating within the sample and preferential movement and pinning of flux lines around the growth section regions (GSRs) and growth sector boundaries (GSBs), respectively. The modelling framework will allow further investigation of various inhomogeneities that arise during the processing of (RE)BCO bulk superconductors, including inhomogeneous Jc distributions and the presence of current-limiting grain boundaries and cracks, and it can be used to assist optimization of processing and PFM techniques for practical bulk superconductor applications. © 2014 IOP Publishing Ltd.
Resumo:
Laterally-coupled distributed feedback (LC-DFB) laser diodes made without an epitaxial re-growth process have the advantage of a simple fabrication process. In this paper, two-dimensional optical field distribution of the fundamental quasi TE (transverse electric) mode is calculated by means of a semivectorial finite-difference method (SV-FDM). The dependence of the effective coupling coefficient (kappa(eff)) on the dutycycle of first-, second- and third-order LC-DFB LDs is investigated using modified coupled wave equations.
Resumo:
A novel broadband superluminescent diode (SLD), which has a symmetric graded tensile-strained bulk InGaAs active region, is developed. The symmetric-graded tensile-strained bulk InGaAs is achieved by changing the group III TMGa source flow only during its growth process by low-pressure metalorganic vapor-phase epitaxy (LP-MOVPE), in which the much different tensile strain is introduced simultaneously. At 200mA injection current, the full width at half maximum (FWHM) of the emission spectrum of the SLID can be up to 122nm, covering the range of 1508-1630nm, and the output power is 11.5mW.
Resumo:
Metal-semiconductor-metal (MSM) structures were fabricated by RF-plasma-assisted MBE using different buffer layer structures. One type of buffer structure consists of an AlN high-temperature buffer layer (HTBL) and a GaN intermediate temperature buffer layer (ITBL), another buffer structure consists of just a single A IN HTBL. Systematic measurements in the flicker noise and deep level transient Fourier spectroscopy (DLTFS) measurements were used to characterize the defect properties in the films. Both the noise and DLTFS measurements indicate improved properties for devices fabricated with the use of ITBL and is attributed to the relaxation of residue strain in the epitaxial layer during growth process. (C) 2003 Elsevier Ltd. All rights reserved.
Resumo:
GaN nanowires have been grown with and without In as an additional source. The effects of In surfactant on the crystal quality and photoluminescence property of GaN nanowires are reported for the first time. X-ray diffraction, field emission scanning electron microscopy, high-resolution transmission electron microscopy, energy-dispersive x-ray spectroscopy, and photoluminescence measurements are employed to analyse the products. The results show that introducing a certain amount of In surfactant during the growth process can improve the crystal quality of the GaN nanowires, and enhance the photolurainescence of them. In addition, the as-prepared GaN nanowires have the advantage of being easy to be separated, which will benefit the subsequent nanodevice fabrication.
Influence of AlN thickness on strain evolution of GaN layer grown on high-temperature AlN interlayer
Resumo:
The strain evolution of a GaN layer grown on a high- temperature AlN interlayer with varying AlN thickness by metalorganic chemical vapour deposition is investigated. In the growth process, the growth strain changes from compression to tension in the top GaN layer, and the thickness at which the compressive- to- tensile strain transition takes place is strongly influenced by the thickness of the AlN interlayer. It is confirmed from the x- ray diffraction results that the AlN interlayer has a remarkable effect on introducing relative compressive strain to the top GaN layer. The strain transition process during the growth of the top GaN layer can be explained by the threading dislocation inclination in the top GaN layer. Adjusting the AlN interlayer thickness could change the density of the threading dislocations in the top GaN layer and then change the stress evolution during the top GaN layer's growth.
Influences of reactor pressure of GaN buffer layers on morphological evolution of GaN grown by MOCVD
Resumo:
The morphological evolution of GaN thin films grown on sapphire by metalorganic chemical vapor deposition was demonstrated to depend strongly on the growth pressure of GaN nucleation layer (NL). For the commonly used two-step growth process, a change in deposition pressure of NL greatly influences the growth mode and morphological evolution of the following GaN epitaxy. By means of atomic force microscopy and scanning electron microscope, it is shown that the initial density and the spacing of nucleation sites on the NL and subsequently the growth mode of FIT GaN epilayer may be directly controlled by tailoring the initial low temperature NL growth pressure. A mode is proposed to explain the TD reduction for NL grown at relatively high reactor pressure. (C) 2003 Elsevier B.V. All rights reserved.