973 resultados para Ground Penetration Radar
Resumo:
O Distrito Grafitífero Aracoiába-Baturité apresenta depósitos do tipo gnaisse grafitoso (minério disseminado) e veio (minério maciço) com diferentes origens genéticas e com características físicas e ambientes geológicos de formação próprios. O minério tipo gnaisse grafitoso é de origem sedimentar, singenético, com teores de 1,5 a 8% de C, que se distribuem ao longo de duas extensas faixas paralelas, hospedadas na Subunidade Baturité, que constitui um importante metalotecto regional. A associação de grafita metamórfica disseminada em metassedimentos da Sequência Acarápe constitui um geoindicador de antiga bacia sedimentar neoproterozóica e, também, pode ser considerado como zona de geosutura resultante do subsequente fechamento de um oceano primitivo. As rochas desta subunidade correspondem na paleogeografia da Sequência Acarápe aos fácies de sopé de talude e de planície abissal. O minério tipo veio (fluido depositado) é epigenético e, com teores entre 20% e 70% de C, forma corpos tabulares e bolsões, controlados em escala local por estruturas de alívio (falhas, fraturas, zonas de contato, eixos de dobras etc.) que permitiram a percolação de soluções penumatolíticas relacionadas ao corpo plutônico de Pedra Aguda. As variações dos valores das relações entre isótopos estáveis de carbono (δ13C) na grafita do minério disseminado são de -26,72 a -23,52 e do minério maciço de -27,03 a -20,83, revelando sinal de atividades biológicas (bioassinaturas) e permitem afirmar que a grafita das amostras acima são derivadas de matéria orgânica. Foram apresentados os principais guias de prospecção para grafita e testados os seguintes métodos geofísicos: Eletro-Resistividade; GPR - Ground Penetrating Radar; Magnetometria; VLF (Very Low Frequency); e Polarização Induzida Espectral (IPS) / Resistividade (ER). A conjugação dos métodos de Polarização Induzida Espectral (IPS) e Eletro Resistividade (ER) foi o que demonstrou a melhor eficiência. Com relação à determinação do teor de carbono por termogravimetria (ATG), que é o método mais utilizado para este elemento. Verificou-se, que as faixas de queima atribuídas ao carbono no minério do Distrito de Aracoiába-Baturité (340 a 570C e de 570 a 1050C) eram diferentes das faixas do minério de Minas Gerais (350C a 650C e 650C a 1.050C). Esta constatação indica a necessidade de se determinar previamente as faixas de temperatura para cada região pesquisada.
Resumo:
O trabalho presente tem como enfoque o estudo da evolução quaternária da Baixada de Jacarepaguá situada no estado do Rio de Janeiro através do uso do método GPR (Ground Penetrating Radar). Os numerosos estudos feitos na Baixada de Jacarepaguá, baseados nas curvas de variação do nível do mar em diferentes setores da costa Brasileira (MARTIN et al. 1985) e datações ao radiocarbono contribuíram na elaboração de um modelo evolutivo no Pleistoceno e no Holoceno. Esse modelo mostra em primeiro lugar episódios transgressivos em 7000-5100 anos BP, 3900-3600 anos BP e 2700-2500 anos BP e episódios regressivos a 5100-3900 anos BP, 3600-2700 anos BP e depois de 2500 anos BP. Esses episódios de variações do nível relativo do mar tiveram por consequência a constante evolução da Baixada de Jacarepaguá do estado de ilha-barreira com uma e depois duas barreiras (interna e externa), fruto da inundação da planície por invasão marinha em episódios transgressivos, a um estado de planície costeira emersa em episódios regressivos com barreira progradante direção ao mar e processos erosivos associados. Esse modelo evolutivo não inclui dados processados obtidos com o GPR, método que permite por impulsos eletromagnéticos de alta freqüência gerar um perfil de refletores baseado nas descontinuidades elétricas na subsuperficie. Os perfis levantados e processados nesse trabalho permitiram confirmar esse modelo evolutivo, mostrando uma sucessão de migração do perfil de praia e geometria sedimentar associada em resposta as numerosas variações eustática local.
Resumo:
We propose the exploding-reflector method to simulate a monostatic survey with a single simulation. The exploding reflector, used in seismic modeling, is adapted for ground-penetrating radar (GPR) modeling by using the analogy between acoustic and electromagnetic waves. The method can be used with ray tracing to obtain the location of the interfaces and estimate the properties of the medium on the basis of the traveltimes and reflection amplitudes. In particular, these can provide a better estimation of the conductivity and geometrical details. The modeling methodology is complemented with the use of the plane-wave method. The technique is illustrated with GPR data from an excavated tomb of the nineteenth century.
Resumo:
Ground-penetrating radar (GPR) is a rapid geophysical technique that we have used to assess four illegally buried waste locations in Northern Ireland. GPR allowed informed positioning of the less-rapid, if more accurate use of electrical resistivity imaging (ERI). In conductive waste, GPR signal loss can be used to map the areal extent of waste, allowing ERI survey lines to be positioned. In less conductive waste the geometry of the burial can be ascertained from GPR alone, allowing rapid assessment. In both circumstances, the conjunctive use of GPR and ERI is considered best practice for cross-validation of results and enhancing data interpretation.
Resumo:
Geophysics may assist scent dogs and divers in the search of water bodies for human and animal remains, contraband, weapons and explosives by surveying large areas rapidly and identifying targets or environmental hazards. The most commonly applied methods are described and evaluated for forensic searches. Seismic reflection or refraction and CHIRPS are useful for deep, openwater bodies and identifying large targets, yet limited in streams and ponds. The use of ground penetrating radar (GPR) onwater(WPR) is of limited use in deepwaters (over 20 m) but is advantageous in the search for non-metallic targets in small ditches and ponds. Largemetal or metal-bearing targets can be successfully imaged in deep waters by using towfish magnetometers: in shallow waters such a towfish cannot be used, so a non-metalliferous boat can carry a terrestrial magnetometer. Each device has its uses, depending on the target and location: unknown target make-up (e.g. a homicide victimwith or without a metal object) may be best located using a range ofmethods (the multi-proxy approach), depending on water depth. Geophysics may not definitively find the target, but can provide areas for elimination and detailed search by dogs and divers, saving time and effort.
Resumo:
This paper presents the results of field geophysical testing and laboratory testing of peat from Carn Park and Roosky raised bogs in the Irish Midlands. The motivation for the work was highlight the importance of these areas and to begin to attempt to understand the reasons for the failure of the bogs despite them having surface slopes of some 1°. It was found that the peat is typical of that of Irish raised bogs being up to 8m thick towards the “high” dome of the bogs. The peat is characterised by low density, high water content, high organic content, low undrained shear strength and high compressibility. The peat is also relatively permeable at in situ stress. Geophysical electrical resistivity tomography and ground penetrating radar data shows a clear thinning of the peat in the area of the failures corresponding to a reduction in volume from dewatering by edge drains/peat harvesting. This finding is supported by detailed water content measurements. It was also shown that the peat base topography is relatively flat and indicates that the observed surface movement has come from within the peat rather than from the material below the peat. Potential causes of the failures include conventional slope instability, the effect of seepage forces or the release of built-up gas in the peat mass. Further measurements are required in order to study these in more detail.
Resumo:
Accurate conceptual models of groundwater systems are essential for correct interpretation of monitoring data in catchment studies. In surface-water dominated hard rock regions, modern ground and surface water monitoring programmes often have very high resolution chemical, meteorological and hydrological observations but lack an equivalent emphasis on the subsurface environment, the properties of which exert a strong control on flow pathways and interactions with surface waters. The reasons for this disparity are the complexity of the system and the difficulty in accurately characterising the subsurface, except locally at outcrops or in boreholes. This is particularly the case in maritime north-western Europe, where a legacy of glacial activity, combined with large areas underlain by heterogeneous igneous and metamorphic bedrock, make the structure and weathering of bedrock difficult to map or model. Traditional approaches which seek to extrapolate information from borehole to field-scale are of limited application in these environments due to the high degree of spatial heterogeneity. Here we apply an integrative and multi-scale approach, optimising and combining standard geophysical techniques to generate a three-dimensional geological conceptual model of the subsurface in a catchment in NE Ireland. Available airborne LiDAR, electromagnetic and magnetic data sets were analysed for the region. At field-scale surface geophysical methods, including electrical resistivity tomography, seismic refraction, ground penetrating radar and magnetic surveys, were used and combined with field mapping of outcrops and borehole testing. The study demonstrates how combined interpretation of multiple methods at a range of scales produces robust three-dimensional conceptual models and a stronger basis for interpreting groundwater and surface water monitoring data.
Resumo:
The burial of objects (human remains, explosives, weapons) below or behind concrete, brick, plaster or tiling may be associated with serious crime and are difficult locations to search. These are quite common forensic search scenarios but little has been published on them to-date. Most documented discoveries are accidental or from suspect/witness testimony. The problem in locating such hidden objects means a random or chance-based approach is not advisable. A preliminary strategy is presented here, based on previous studies, augmented by primary research where new technology or applications are required. This blend allows a rudimentary search workflow, from remote desktop study, to non-destructive investigation through to recommendations as to how the above may inform excavation, demonstrated here with a case study from a homicide investigation. Published case studies on the search for human remains demonstrate the problems encountered when trying to find and recover sealed-in and sealed over locations. Established methods include desktop study, photography, geophysics and search dogs:these are integrated with new technology (LiDAR and laser scanning; photographic rectification; close quarter aerial imagery; ground-penetrating radar on walls and gamma-ray/neutron activation radiography) to propose this possible search strategy.
Resumo:
Burial grounds are commonly surveyed and searched by both police/humanitarian search teams and archaeologists.
One aspect of an efficient search is to establish areas free of recent internments to allow the concentration of assets in suspect
terrain. While 100% surety in locating remains can never be achieved, the deployment of a red, amber green (RAG) system for
assessment has proven invaluable to our surveys. The RAG system is based on a desktop study (including burial ground
records), visual inspection (mounding, collapses) and use of geophysics (in this case, ground penetrating radar or GPR) for a
multi-proxy assessment that provides search authorities an assessment of the state of inhumations and a level of legal backup
for decisions they make on excavation or not (‘exit strategy’). The system is flexible and will be built upon as research
continues.
Resumo:
Rapid in situ diagnosis of damage is a key issue in the preservation of stone-built cultural heritage. This is evident in the increasing number of congresses, workshops and publications dealing with this issue. With this increased activity has come, however, the realisation that for many culturally significant artefacts it is not possible either to remove samples for analysis or to affix surface markers for measurement. It is for this reason that there has been a growth of interest in non-destructive and minimally invasive techniques for characterising internal and external stone condition. With this interest has come the realisation that no single technique can adequately encompass the wide variety of parameters to be assessed or provide the range of information required to identify appropriate conservation. In this paper we describe a strategy to address these problems through the development of an integrated `tool kit' of measurement and analytical techniques aimed specifically at linking object-specific research to appropriate intervention. The strategy is based initially upon the acquisition of accurate three-dimensional models of stone-built heritage at different scales using a combination of millimetre accurate LiDAR and sub-millimetre accurate Object Scanning that can be exported into a GIS or directly into CAD. These are currently used to overlay information on stone characteristics obtained through a combination of Ground Penetrating Radar, Surface Permeametry, Colorimetry and X-ray Fluorescence, but the possibility exists for adding to this array of techniques as appropriate. In addition to the integrated three-dimensional data array provided by superimposition upon Digital Terrain Models, there is the capability of accurate re-measurement to show patterns of surface loss and changes in material condition over time. Thus it is possible to both record and base-line condition and to identify areas that require either preventive maintenance or more significant pre-emptive intervention. In pursuit of these goals the authors are developing, through a UK Government supported collaboration between University Researchers and Conservation Architects, commercially viable protocols for damage diagnosis, condition monitoring and eventually mechanisms for prioritizing repairs to stone-built heritage. The understanding is, however, that such strategies are not age-constrained and can ultimately be applied to structures of any age.
Resumo:
This study applies spatial statistical techniques including cokriging to integrate airborne geophysical (radiometric) data with ground-based measurements of peat depth and soil organic carbon (SOC) to monitor change in peat cover for carbon stock calculations. The research is part of the EU funded Tellus Border project and is supported by the INTERREG IVA development programme of the European Regional Development Fund, which is managed by the Special EU Programmes Body (SEUPB). The premise is that saturated peat attenuates the radiometric signal from underlying soils and rocks. Contemporaneous ground-based measurements were collected to corroborate mapped estimates and develop a statistical model for volumetric carbon content (VCC) to 0.5 metres. Field measurements included ground penetrating radar, gamma ray spectrometry and a soil sampling methodology which measured bulk density and soil moisture to determine VCC. One aim of the study was to explore whether airborne radiometric survey data can be used to establish VCC across a region. To account for the footprint of airborne radiometric data, five cores were obtained at each soil sampling location: one at the centre of the ground radiometric equivalent sample location and one at each of the four corners 20 metres apart. This soil sampling strategy replicated the methodology deployed for the Tellus Border geochemistry survey. Two key issues will be discussed from this work. The first addresses the integration of different sampling supports for airborne and ground measured data and the second discusses the compositional nature of the VOC data.
Resumo:
Tese de doutoramento, Geologia (Geologia Económica e do Ambiente), Universidade de Lisboa, Faculdade de Ciências, 2014
Resumo:
This study uses digital elevation models and ground-penetrating radar to quantify the relation between the surface morphodynamics and subsurface sedimentology in the sandy braided South Saskatchewan River, Canada. A unique aspect of the methodology is that both digital elevation model and ground-penetrating radar data were collected from the same locations in 2004, 2005, 2006 and 2007, thus enabling the surface morphodynamics to be tied explicitly to the associated evolving depositional product. The occurrence of a large flood in 2005 also allowed the influence of discharge to be assessed with respect to the processproduct relationship. The data demonstrate that the morphology of the study reach evolved even during modest discharges, but more extensive erosion was caused by the large flood. In addition, the study reach was dominated by compound bars before the flood, but switched to being dominated by unit bars during and after the flood. The extent to which the subsurface deposits (the product') were modified by the surface morphodynamics (the process') was quantified using the changes in radar-facies recorded in sequential ground-penetrating radar surveys. These surveys reveal that during the large flood there was an increase in the proportion of facies associated with bar margin accretion and larger dunes. In subsequent years, these facies became truncated and replaced with facies associated with smaller dune sets. This analysis shows that unit bars generally become truncated more laterally than vertically and, thus, they lose the high-angle bar margin deposits and smaller scale bar-top deposits. In general, the only fragments that remain of the unit bars are dune sets, thus making identification of the original unit barform problematic. This novel data set has implications for what may ultimately become preserved in the rock record.
Resumo:
Electromagnetic tomography has been applied to problems in nondestructive evolution, ground-penetrating radar, synthetic aperture radar, target identification, electrical well logging, medical imaging etc. The problem of electromagnetic tomography involves the estimation of cross sectional distribution dielectric permittivity, conductivity etc based on measurement of the scattered fields. The inverse scattering problem of electromagnetic imaging is highly non linear and ill posed, and is liable to get trapped in local minima. The iterative solution techniques employed for computing the inverse scattering problem of electromagnetic imaging are highly computation intensive. Thus the solution to electromagnetic imaging problem is beset with convergence and computational issues. The attempt of this thesis is to develop methods suitable for improving the convergence and reduce the total computations for tomographic imaging of two dimensional dielectric cylinders illuminated by TM polarized waves, where the scattering problem is defmed using scalar equations. A multi resolution frequency hopping approach was proposed as opposed to the conventional frequency hopping approach employed to image large inhomogeneous scatterers. The strategy was tested on both synthetic and experimental data and gave results that were better localized and also accelerated the iterative procedure employed for the imaging. A Degree of Symmetry formulation was introduced to locate the scatterer in the investigation domain when the scatterer cross section was circular. The investigation domain could thus be reduced which reduced the degrees of freedom of the inverse scattering process. Thus the entire measured scattered data was available for the optimization of fewer numbers of pixels. This resulted in better and more robust reconstructions of the scatterer cross sectional profile. The Degree of Symmetry formulation could also be applied to the practical problem of limited angle tomography, as in the case of a buried pipeline, where the ill posedness is much larger. The formulation was also tested using experimental data generated from an experimental setup that was designed. The experimental results confirmed the practical applicability of the formulation.
Resumo:
Groups of circular to oval enclosed depressions in soft sediments of Pleistocene age are relatively common in north-west Europe. These features are normally interpreted as being either glacial or periglacial in origin. Where these features are developed in glacial sediments, a glacial (and specifically ‘kettle hole’) genesis is considered most likely. Some groups of features, however, have been re-interpreted as being periglacial in origin and are thought to be the remains of cryogenic mounds (former pingos or palsas/lithalsas). The problem at many sites, of course, is correct identification and previously this was often resolved through extensive trenching of the sediments. The use of geophysics in the form of electrical resistivity tomography and ground probing radar, however, can aid investigation and interpretation and is less invasive. A group of enclosed depressions in the Letton area of Herefordshire within the Last Glacial Maximum ice limit (Late Devensian) have been investigated in this way. The morphology and internal structure of the features and their existence in glaciolacustrine sediments of Late Devensian age strongly suggests that these depressions are kettle holes resulting from ice block discharge into a shallow lakes or lakes, and hence a glacial origin is supported. The lack of any ramparts surrounding the depressions (at the surface or any evidence of these at depth) and the fact that they do not overlap (‘mutually interfere’) indicates that they are not the remains of cryogenic mounds.