974 resultados para Green algae
Resumo:
A radial basis function neural network was employed to model the abundance of cyanobacteria. The trained network could predict the populations of two bloom forming algal taxa with high accuracy, Nostocales spp. and Anabaena spp., in the River Darling, Australia. To elucidate the population dynamics for both Nostocales spp. and Anabaena spp., sensitivity analysis was performed with the following results. Total Kjeldahl nitrogen had a very strong influence on the abundance of the two algal taxa, electrical conductivity had a very strong negative relationship with the population of the two algal species, and flow was identified as one dominant factor influencing algal blooms after a scatter plot revealed that high flow could significantly reduce the algal biomass for both Nostocales spp. and Anabaena spp. Other variables such as turbidity, color, and pH were less important in determining the abundance and succession of the algal blooms.
Resumo:
Both colonies and free-living cells of the terrestrial cyanobacterium, Nostoc flagelliforme (Berk. & Curtis) Bornet & Flahault, were cultured under aquatic conditions to develop the techniques for the cultivation and restoration of this endangered resource. The colonial filaments disintegrated with their sheaths ruptured in about 2 days without any desiccating treatments. Periodic desiccation played an important role in preventing the alga from decomposing, with greater delays to sheath rupture with a higher frequency of exposure to air. The bacterial numbers in the culture treated with seven periods of desiccation per day were about 50% less compared with the cultures without the desiccation treatment. When bacteria in the culture were controlled, the colonial filaments did not disintegrate and maintained the integrity of their sheath for about 20 days even without the desiccation treatments, indicating the importance of desiccation for N. flagelliforme to prevent them from being disintegrated by bacteria. On the other hand, when free-living cells obtained from crushed colonial filaments were cultured in liquid medium, they developed into single filaments with sheaths, within which multiple filaments were formed later on as a colony. Such colonial filaments were developed at 15, 25, and 30degreesC at either 20 or 60 mumol photons.m(-2).s(-1); colonies did not develop at 180 mumol photons.m(-2).s(-1), though this light level resulted in the most rapid growth of the cells. Conditions of 60 mumol photons.m(-2).s(-1) and 25degrees C appeared to result in the best colonial development and faster growth of the sheath-held colonies of N. flagelliforme when cultured indoor under aquatic conditions.
Resumo:
Ecballocystopsis dichotomus sp. nov. is the third described species of Ecballocystopsis that grows on rock under water and epiphytically on the filaments of Cladophora and Mougeotia (green algae) collected in a small irrigation ditch in Chong-yang county, Hubei Province (East longitude 29 degrees 30', North latitude 114 degrees 10') and in Zhu-xi county, Hubei Province (East longitude 32 degrees 20', North latitude 109 degrees 45'). The new species differs from E. indica IYENGAR (1933) in having dichotomous branching and its smaller sized thallus; it differs from the second species, E. desikacharyi PRASAD (1985), in having looped filaments, dichotomous branching and smaller cells. Three patterns of cell divisions were observed in E. dichotomus sp. nov. (transverse, longitudinal and oblique). It may be that the new species is evolutionary a more advanced species based upon the structure of its thallus and the manner of spore formation. The systematic position of the genus, based on the comparative studies of the genus Ecballocystis BOHLIN with Cylindrocapsopsis IYENGAR, is discussed.
Resumo:
The role of phosphorus cycling in algal metabolism was studied in a shallow lake, Donghu, in Wuhan using the methods of measuring cell quota C, N and P, and calculating nutrients uptake rate by algal photosynthesis. The mean daily phosphorus uptake rate of phytoplankton varied between 0.04-0.11 and 0.027-0.053 g/m2/d in station I and station II respectively. The turnover time of phosphorus in phytoplankton metabolism ranged from 0.75-5.0 days during 1979-1986. The available P was 0.176 (+/- 0.156) g/m3 (mean +/- SD) in 1982 and 0.591 (+/- 0.24) g/m3 in 1986. The relationship between P/B ratio (Y) and TP (X: mg/l) was described by the following regression equation Y = 1.163 + 0.512logX (r = 0.731, P < 0.001). The dynamics of algal biomass and algal species succession were monitored as the indicators of environmental enrichment. The small-sized algae have replaced the blue-green algae as the dominant species during 1979-1986. The small-sized algae include Merismopedia glauca, Cryptomonas ovata, Cryptomonas erosa, several species Cyclotella. There has been drastic decrease in algal biomass and an obvious increase in P/B ratio. A nutrient competition hypothesis is proposed to explain the reason of the disappearance of blue-green algae bloom. The drastic change in algal size and the results in high P/B ratio (reaching a maximum mean daily ratio of 1.09 in 1986) may suggest a transition of algal species from K-selection to r-selection in Lake Donghu.
Resumo:
PS I, PS II and light-harvesting complexes (LHC) in oxygen evolving photosynthetic organisms were reviewed. These organisms include cyanobacteria, red algae, brown algae, diatoms, chrysophytes, dinophytes, xanthophytes, crypophytes, green algae and green plants. The diversity of pigment-protein complexes that fuel the conversion of radiant energy to chemical bond energy was highlighted, and the evolutionary relationships among the LHC structural polypeptides and the characteristics of the fluorescence emission of PS I at 77 K was discussed.
Resumo:
Phycobilisomes (PBS) were isolated from blue-green alga Spirulina platensis. Scanning tunneling microscope was used to investigate the three-dimensional structure of PBS deposited on freshly cleaved highly oriented pyrolytic graphite (HOPG) in ambient condition at room temperature. The results showed that the rods of PBS radiated from the core to different directions in the space other than arrayed in one plane, which was different from the typical hemi-discoidal model structure. The diameter of PBS was up to 70 nm, and the rod was approximately 50 nm in length. Similar results were observed in Langmuir-Blodgett (LB) film of PBS. The dissociated PBS could reaggregate into rod-like structures and easily form two-dimensional membrane while being absorbed on HOPG, however, no intact PBS was observed. The filling-space model structure of PBS in Spirulina platensis with STM from three-dimensional real space at nanometer scale was found, which showed that this new structural model of PBS surely exists in blue-green algae and red algae. The function of this structural model of PBS was also discussed.
Resumo:
Allophycocyanin (A-PC) is the main core component of phycobilisome found in blue-green algae. The apo-allophycocyanin and its subunits were expressed in Escherichia coli and their antioxidant properties were evaluated using deoxyribose assay. The result showed that both recombinant allophycocyanin fused with maltose binding protein (MBP) tag and 6 x His-tag and their alpha or beta subunits can scavenge hydroxyl radicals successfully, and the separated g or beta subunits had a higher inhibition effect on hydroxyl radicals than that when they combined together. The scavenging effects increased with the increasing concentration. These results clearly suggested that apo-allophycocyanin is involved in the antioxidant and radical scavenging activity of phycocyanin, and the antioxidant activity may be partially responsible to the anti-tumor effect of the recombinant allophycocyanin. (c) 2006 Elsevier B.V. All rights reserved.
Resumo:
Phytoene desaturase is one of the most important enzymes necessary for the biosynthesis of carotenoids in some cyanobacteria, green algae and plants. In this study, genomic DNA and cDNA of pds were cloned from unicellular green alga Haematococcus pluvialis strain323 using PCR and RT-PCR methods. The cDNA was cloned into plasmid pET-28a and efficiently expressed in Escherichia coli BL21. The complete genomic PDS gene of H. pluvialis, 3.3 kb in size, included eight exons and seven introns. To locate transcriptional regulation elements, an approximate 1 kb of 5'-flanking region was isolated by genome-walking method. Results of bioinformatic analysis showed several putative cis-elements e.g. the ABRE motif (abscisic acid responsive element), the C-repeat/DRE (dehydration responsive element) motif and the GCN4 motif were located in 5'-flanking region of pds. Results of phylogenetic analyses reveal that different sources of PDS genes form a separate clade, respectively, with 100% bootstrap support. Moreover, a maximum likelihood approach was employed to detect evidence of positive selection in the evolution of PDS genes. Results of branch-site model analysis suggest that 7.9% of sites along the green algal branch are under positive selection, and the PDS gene in green algae exhibits a different evolutionary pattern from its counterparts in cyanobacteria and plants.
Resumo:
随着全球生态环境的恶化,各国日益重视对水体中各种污染物的治理。利用藻类的吸收、富集和降解作用,可以去除污水中的营养物质、重金属离子和有机污染物,与其他物理、化学及工程的方法相比,该技术具有以下优点:成本低、能耗小、治理效果较好,对环境污染小,有利于资源化,有利于整体生态环境的改善,是治理水质污染的新途径。 本文利用几种大型海藻对富营养化海水进行处理,结果发现孔石莼、刚毛藻均有很强的吸收N、P的能力,吸收能力依次为褶曲刚毛藻>束生刚毛藻>孔石莼。水体中褶曲刚毛藻3 g/L含量,在3~5小时之内,可把中等以上富营养化海水中的N、P降低至一类海水水平。利用刚毛藻处理富营养化地下海水和养殖废水,进行海参和大菱鲆养殖试验,探索藻类净化水质和废水循环利用的新模式,使水体保持较低的营养盐状态,减轻养殖废水对环境的影响,实现了海水养殖业与环境的可持续发展。 刚毛藻在我国近海滩涂分布广泛,利用它来处理富营养化水体,并和水产养殖业相结合,既净化水体,使养殖废水能循环利用,满足水产养殖的需求,又改善水产业生态环境。同时,将回收藻体生产优质饲料、食品和药物等,实现藻类资源的高值利用。刚毛藻营养丰富,用其替代鼠尾藻作海参饲料,资源丰富,成本低,效果好,是一种值得加以开发利用的宝贵资源,具有广泛的应用前景。 生物吸附法是一种经济有效的移除废水中有害重金属离子的方法。由于藻类细胞壁中的多聚糖可提供吸附重金属的位点,廉价而蕴藏丰富的海藻对多种重金属表现出很强的吸附能力。所以本文通过分批实验,研究了非活体刚毛藻对水体中重金属Cu2+、Pb2+和Cd2+的吸附影响因子、吸附热力学、吸附动力学及吸附机理,得到了平衡等温线及动力学数据。吸附过程的最佳pH值为5.0,吸附量随温度的升高而增加,水体中常见的Na+、K+、Ca2+、Mg2+阳离子及Cl-、NO3-、SO42-、C2O42-等阴离子的存在对吸附的影响并不显著。EDTA存在时,吸附百分率大大降低。吸附等温线符合Langmuir和Freundlich方程。刚毛藻对重金属Cu2+、Pb2+和Cd2+的吸附容量很高,25℃时,对Cu2+、Pb2+和Cd2+的最大吸附容量分别为1.61 mmol/g、0.96 mmol/g和0.98 mmol/g,且吸附过程为吸热反应。刚毛藻对重金属Cu2+、Pb2+和Cd2+的吸附过程为化学吸附,在吸附过程中藻体表面的官能团可能与金属离子发生了螯合作用。吸附动力学过程符合pseudo-二级动力学模型,在初始的30min内,吸附速率很快,随后速率逐渐降低。解吸试验表明,用EDTA可以对重金属进行回收,刚毛藻可以循环利用。实验结果表明刚毛藻是一种高效、经济实用的生物吸附材料,可用来吸附回收水体中的重金属Cu2+、Pb2+和Cd2+等。 通过非活体刚毛藻对重金属Cr6+的吸附影响因子、吸附动力学、吸附机理的研究发现,刚毛藻对Cr6+具有很强的还原能力,对电镀废水中的Cr6+的还原去除提供了非常好的方法。吸附过程的最佳pH值为2~3,实际电镀废水通常在此pH范围,因此处理实际废水时,首先在原酸性条件下,对Cr6+进行还原去除,然后调废水pH至5.0,继续进行吸附,去除其他二价离子及被还原的三价Cr离子,实现了利用同一材料还原Cr6+为Cr3+,并将Cr3+和其他重金属离子同时去除。通过对机理的讨论,认为刚毛藻对Cr6+的生物吸附过程不是一个简单的“离子交换过程”,而是一个“吸附还原过程”。在海藻量足够的前提下,只要时间足够长,Cr6+可被彻底还原去除。 利用工业废弃物褐藻渣,对水体中重金属离子Cu2+、Pb2+、Cd2+及Cr6+的生物吸附特性分别进行了讨论,结果表明褐藻渣对重金属离子的吸附特性与刚毛藻一致,吸附等温线符合Langmuir和Freundlich方程,在25℃时,pH为5.0时,由Langmuir方程求出褐藻渣对Cu2+、Pb2+和Cd2+的最大吸附容量分别为4.20 mmol/g、3.13 mmol/g和2.97 mmol/g。褐藻渣对低、高浓度的重金属Cr6+都具有很强的吸附能力,且移除效果比较彻底。实际应用结果表明,褐藻渣是一种高效、经济实用的生物吸附材料,可用来吸附回收水体中的重金属离子,具有广泛的应用前景。
Resumo:
Xuanlong-type Hematite Deposits, distributed in Xuanhua and Longguang area in Hebei province and hosted in the Changchengian Chuanlinggou Formation of Mesoproterozoic, is an oldest depositional iron deposit characterized by oolitic and stromatolitic hematite and siderite. This thesis made an systematic study of its sedimentary, sedimentology, geochemistry, mineralogy and sequence stratigraphy. Based on above, the mechanism and background of biomineralization are discussed. There are four types of hematite ores including stromatolite, algal oolite, algal pisolite and oncolite. Based on detailed study on ore texture, the authors think both algal oolite and algal pisolite ores are organic texture ores, and related to the role of microorganisms. The process of blue-green algae and bacteria in the Xuanlong basin absorbing, adsorbing and sticking iron to build up stromatolite is the formation process of Xuanlong-type hematite deposit. Researches on ore-bearing series and ore geochemistry show that the enrichment of elements is closely related to the microorganism activities. Fe_2O_3 is enriched in dark laminations of stromatolite with much organic matter and SiO_2 in light laminations with detrital matters. The trace elements, especially biogenic elements, including V, P, Mo are enriched in ores but relatively low in country rocks. The paper also demonstrates on the sequence stratigraphy of hematite deposits and five sequences and twelve systems are divided. The characteristics of sequence stratigraphy show that the deposit-forming location has obviously selectivity and always exists under a transgressive setting. The oxygen isotope in hematite is about -2.2~5.7‰, which is similar to that of Hamlys iron formation of Australia but more negative than that of volcanic or hydrothermal iron deposits characterized by high positive values. The calculation by the result of oxygen isotope analysis shows that the temperature of ancient sea water was 48.53℃. The negative value of carbon isotope from siderite indicates its biogenic carbon source. Meanwhile, the occurrence of seismite in the ore-beds, which indicates the formation of hematite deposits is associated with frequent shock caused by structural movement such as distal volcano or ocean-bottom earthquake etc, show the occurrence of hematite deposits is eventual, not gradual. In shorts, Xuanlong-type hematite deposits were the result of interaction among geological setting of semi-isolated Xuanglong basin, favorable hot and humid climate condition, abundant iron source, microorganism such as algae and bateria as well as the fluctuation of the sea level.
Resumo:
Selenium (Se) is a micronutrient necessary for the function of a variety of important enzymes; Se also exhibits a narrow range in concentrations between essentiality and toxicity. Oviparous vertebrates such as birds and fish are especially sensitive to Se toxicity, which causes reproductive impairment and defects in embryo development. Selenium occurs naturally in the Earth's crust, but it can be mobilized by a variety of anthropogenic activities, including agricultural practices, coal burning, and mining.
Mountaintop removal/valley fill (MTR/VF) coal mining is a form of surface mining found throughout central Appalachia in the United States that involves blasting off the tops of mountains to access underlying coal seams. Spoil rock from the mountain is placed into adjacent valleys, forming valley fills, which bury stream headwaters and negatively impact surface water quality. This research focused on the biological impacts of Se leached from MTR/VF coal mining operations located around the Mud River, West Virginia.
In order to assess the status of Se in a lotic (flowing) system such as the Mud River, surface water, insects, and fish samples including creek chub (Semotilus atromaculatus) and green sunfish (Lepomis cyanellus) were collected from a mining impacted site as well as from a reference site not impacted by mining. Analysis of samples from the mined site showed increased conductivity and Se in the surface waters compared to the reference site in addition to increased concentrations of Se in insects and fish. Histological analysis of mined site fish gills showed a lack of normal parasites, suggesting parasite populations may be disrupted due to poor water quality. X-ray absorption near edge spectroscopy techniques were used to determine the speciation of Se in insect and creek chub samples. Insects contained approximately 40-50% inorganic Se (selenate and selenite) and 50-60% organic Se (Se-methionine and Se-cystine) while fish tissues contained lower proportions of inorganic Se than insects, instead having higher proportions of organic Se in the forms of methyl-Se-cysteine, Se-cystine, and Se-methionine.
Otoliths, calcified inner ear structures, were also collected from Mud River creek chubs and green sunfish and analyzed for Se content using laser ablation inductively couple mass spectrometry (LA-ICP-MS). Significant differences were found between the two species of fish, based on the concentrations of otolith Se. Green sunfish otoliths from all sites contained background or low concentrations of otolith Se (< 1 µg/g) that were not significantly different between mined and unmined sites. In contrast creek chub otoliths from the historically mined site contained much higher (≥ 5 µg/g, up to approximately 68 µg/g) concentrations of Se than for the same species in the unmined site or for the green sunfish. Otolith Se concentrations were related to muscle Se concentrations for creek chubs (R2 = 0.54, p = 0.0002 for the last 20% of the otolith Se versus muscle Se) while no relationship was observed for green sunfish.
Additional experiments using biofilms grown in the Mud River showed increased Se in mined site biofilms compared to the reference site. When we fed fathead minnows (Pimephales promelas) on these biofilms in the laboratory they accumulated higher concentrations of Se in liver and ovary tissues compared to fathead minnows fed on reference site biofilms. No differences in Se accumulation were found in muscle from either treatment group. Biofilms were also centrifuged and separated into filamentous green algae and the remaining diatom fraction. The majority of Se was found in the diatom fraction with only about 1/3rd of total biofilm Se concentration present in the filamentous green algae fraction
Finally, zebrafish (Danio rerio) embryos were exposed to aqueous Se in the form of selenate, selenite, and L-selenomethionine in an attempt to determine if oxidative stress plays a role in selenium embryo toxicity. Selenate and selenite exposure did not induce embryo deformities (lordosis and craniofacial malformation). L-selenomethionine, however, induced significantly higher deformity rates at 100 µg/L compared to controls. Antioxidant rescue of L-selenomethionime induced deformities was attempted in embryos using N-acetylcysteine (NAC). Pretreatment with NAC significantly reduced deformities in the zebrafish embryos secondarily treated with L-selenomethionine, suggesting that oxidative stress may play a role in Se toxicity. Selenite exposure also induced a 6.6-fold increase in glutathione-S-transferase pi class 2 gene expression, which is involved in xenobiotic transformation. No changes in gene expression were observed for selenate or L-selenomethionine-exposed embryos.
The findings in this dissertation contribute to the understanding of how Se bioaccumulates in a lotic system and is transferred through a simulated foodweb in addition to further exploring oxidative stress as a potential mechanism for Se-induced embryo toxicity. Future studies should continue to pursue the role of oxidative stress and other mechanisms in Se toxicity and the biotransformation of Se in aquatic ecosystems.
Resumo:
Plant phototropism, the ability to bend toward or away from light, is predominantly controlled by blue-light photoreceptors, the phototropins. Although phototropins have been well-characterized in Arabidopsis thaliana, their evolutionary history is largely unknown. In this study, we complete an in-depth survey of phototropin homologs across land plants and algae using newly available transcriptomic and genomic data. We show that phototropins originated in an ancestor of Viridiplantae (land plants + green algae). Phototropins repeatedly underwent independent duplications in most major land-plant lineages (mosses, lycophytes, ferns, and seed plants), but remained single-copy genes in liverworts and hornworts-an evolutionary pattern shared with another family of photoreceptors, the phytochromes. Following each major duplication event, the phototropins differentiated in parallel, resulting in two specialized, yet partially overlapping, functional forms that primarily mediate either low- or high-light responses. Our detailed phylogeny enables us to not only uncover new phototropin lineages, but also link our understanding of phototropin function in Arabidopsis with what is known in Adiantum and Physcomitrella (the major model organisms outside of flowering plants). We propose that the convergent functional divergences of phototropin paralogs likely contributed to the success of plants through time in adapting to habitats with diverse and heterogeneous light conditions.
Resumo:
The absorption spectra of phytoplankton in the visible domain hold implicit information on the phytoplankton community structure. Here we use this information to retrieve quantitative information on phytoplankton size structure by developing a novel method to compute the exponent of an assumed power-law for their particle-size spectrum. This quantity, in combination with total chlorophyll-a concentration, can be used to estimate the fractional concentration of chlorophyll in any arbitrarily-defined size class of phytoplankton. We further define and derive expressions for two distinct measures of cell size of mixed. populations, namely, the average spherical diameter of a bio-optically equivalent homogeneous population of cells of equal size, and the average equivalent spherical diameter of a population of cells that follow a power-law particle-size distribution. The method relies on measurements of two quantities of a phytoplankton sample: the concentration of chlorophyll-a, which is an operational index of phytoplankton biomass, and the total absorption coefficient of phytoplankton in the red peak of visible spectrum at 676 nm. A sensitivity analysis confirms that the relative errors in the estimates of the exponent of particle size spectra are reasonably low. The exponents of phytoplankton size spectra, estimated for a large set of in situ data from a variety of oceanic environments (similar to 2400 samples), are within a reasonable range; and the estimated fractions of chlorophyll in pico-, nano- and micro-phytoplankton are generally consistent with those obtained by an independent, indirect method based on diagnostic pigments determined using high-performance liquid chromatography. The estimates of cell size for in situ samples dominated by different phytoplankton types (diatoms, prymnesiophytes, Prochlorococcus, other cyanobacteria and green algae) yield nominal sizes consistent with the taxonomic classification. To estimate the same quantities from satellite-derived ocean-colour data, we combine our method with algorithms for obtaining inherent optical properties from remote sensing. The spatial distribution of the size-spectrum exponent and the chlorophyll fractions of pico-, nano- and micro-phytoplankton estimated from satellite remote sensing are in agreement with the current understanding of the biogeography of phytoplankton functional types in the global oceans. This study contributes to our understanding of the distribution and time evolution of phytoplankton size structure in the global oceans.
Resumo:
Summary The response to sulfate deficiency of plants and freshwater green algae has been extensively analysed by system biology approaches. By contrast, seawater sulfate concentration is high and very little is known about the sulfur metabolism of marine organisms. Here, we used a combination of metabolite analysis and transcriptomics to analyse the response of the marine microalga Emiliania huxleyi as it acclimated to sulfate limitation. Lowering sulfate availability in artificial seawater from 25 to 5 mM resulted in significant reduction in growth and intracellular concentrations of dimethylsulfoniopropionate and glutathione. Sulfate-limited E. huxleyi cells showed increased sulfate uptake but sulfate reduction to sulfite did not seem to be regulated. Sulfate limitation in E. huxleyi affected expression of 1718 genes. The vast majority of these genes were upregulated, including genes involved in carbohydrate and lipid metabolism, and genes involved in the general stress response. The acclimation response of E. huxleyi to sulfate deficiency shows several similarities to the well-described responses of Arabidopsis and Chlamydomonas, but also has many unique features. This dataset shows that even though E. huxleyi is adapted to constitutively high sulfate concentration, it retains the ability to re-program its gene expression in response to reduced sulfate availability.
Resumo:
This paper reviews some practical aspects of the application of algal biomass for the biosorption of heavy metals from wastewater. The ability of different algal species to remove metals varies with algal group and morphology, with the speciation of specific metals and their competition with others in wastewater, and with environmental or process factors. The scattered literature on the uptake of heavy metals by both living and dead algal biomass - both macroalgae and immobilized microalgae - has been reviewed, and the uptake capacity and efficiency of different species, as well as what is known about the mechanisms of biosorption, are presented. Data on metal uptake have commonly been fitted to equilibrium models, such as the Langmuir and Freundlich isotherm models, and the parameters of these models permit the uptake capacity of different algal species under different process conditions to be compared. Higher uptake capacities have been found for brown algae than for red and green algae. Kelps and fucoids are the most important groups of algae used for biosorption of heavy metals, probably because of their abundant cell wall polysacchrides and extracellular polymers. Another important practical aspect is the possibility of re-using algal biomass in several adsorption/desorption cycles (up to 10 have been used with Sargassum spp), and the influence of morphology and environmental conditions on the re-usability of algal tissue is also considered.