910 resultados para Green Fluorescent Protein
Resumo:
Production of zebrafish by modifying endogenous growth hormone (GH) gene through homologous recombination is described here. We first constructed the targeting vectors pGHT1.7k and pGHT2.8k, which were used for the knockout/knockin of the endogenous GH gene of zebrafish, and injected these two vectors into the embryos of zebrafish. Overall, the rate of targeted integration with the characteristic of germ line transmission in zebrafish was 1.7x10(-6). In one experimental patch, the integrating efficiency of pGHT2.8k was higher than that of pGHT1.7k, but the lethal effect of pGHT2.8k was stronger than that of pGHT1.7k. The clones with the correct integration of target genes were identified by a simple screening procedure based on green fluorescent protein (GFP) and RFP dual selection, which corresponded to homologous recombination and random insertion, respectively. The potential homologous recombination zebrafish was further bred to produce a heterozygous F-1 generation, selected based on the presence of GFP. The potential targeted integration of exogenous GH genes into a zebrafish genome at the P-0 generation was further verified by polymerase chain reaction and Southern blot analysis. Approximately 2.5% of potential founder knockout and knockin zebrafish had the characteristic of germ line transmission. In this study, we developed an efficient method for producing the targeted gene modification in zebrafish for future studies on genetic modifications and gene functions using this model organism.
Resumo:
The fp25k gene of Helicoverpa armigera single nucleocapsid nucleopolyhedrovirus (HearNPV) was studied. HearNPV fp25k gene transcription was found starting from about 18 h post-infection, and protein could be detected from the same time with antiserum against FP25K. To study the function of HearNPV fp25k, a recombinant HearNPV (HaBacWD11) with an enhanced green fluorescent protein (GFP) gene replacing the fp25k was constructed using HaBacHZ8, a bacmid of HearNPV that lacks the polyhedrin gene. Growth curve analysis showed that HaBacWD11 produced higher titres of budded viruses (BVs) than its wild-type counterpart HaBacHZ8-GFP. Electron microscopic analysis indicated that at the late stage of infection, the number of intranuclear enveloped nucleocapsids in HaBacWD11-infected cells was much less than that of HaBacHZ8-GFP. A rescue recombinant virus HaBacWD14 was constructed by reintroducing fp25k gene into HaBacWD11. The growth curve and electron microscopic analysis of the rescued recombinant confirmed that the increase of BV yield and the decrease of the virion production in infected cells were the result of fp25k deletion. The expression of membrane fusion protein (Ha133) and ODV-E66 were studied using the FP25K mutants HaBacWD11 and HaBacHZ8-GFP. Unlike FP25K mutants in Autographa californica multicapsid NPV (AcMNPV), which caused an increase in the expression of membrane fusion protein GP64 and a decrease of ODV-E66, no obvious changes at the expression level of Ha133 and ODV-E66 were observed in HearNPV FP25K mutant.
Resumo:
Rainbow trout historic H3 (RH3) promoter was cloned via high fidelity PCR. The cloned RH3 promoter was inserted into a promoter-lacked vector pEGFP-1, resulting in an expression vector pRH3FGFP-1. The linearized pRH3EGFP-1 was microinjected into fertilized eggs of rare minnows and the sequential embryogenetic processes were monitored under a fluorescent microscope. Strong green fluorescence was ubiquitously observed at as early as the gastrula stage and then in various tissues at the fry stage. The results indicate that RH3 promoter, as a piscine promoter, could serve in producing transgenic Cyprinoid such as rare minnow. Promoter activity of RH3, CMV and common carp beta-actin (CA) were compared in rare minnow by the expression of respective recombinant EGFP vectors. The expression of pCMVEGFP occurred earlier than the following one, pRH3EGFP-1, and then pCAEGFP during the embryogenesis of the transgenics. Their expression activities demonstrated that the CMV promoter is the strongest one, followed by the CA and then the RH3.
Resumo:
We have evaluated the efficacy of RecA, a prokaryotic protein involved with homologous recombination, to direct site-specific mutagenesis in zebrafish embryos. For this we coinjected a vector containing a mutated enhanced green fluorescent protein (EGFP) gene plus 236-nucleotide corrective single-stranded DNAs coated with RecA into I-cell zebrafish embryos. Twenty-hours after fertilization, about 5% to 20% of injected embryos showed EGFP expression in I or more cells when RecA-coated corrective DNAs were used, but not when RecA was omitted. Mutated EGFP genes with 1-bp insertions or deletions were inefficiently activated, whereas those with 7-bp insertions were activated about 4-fold more efficiently. RecA-coated template strand had a higher efficiency than its complementary strand in activation of EGFP expression. Prior irradiation of the embryos with UV light enhanced RecA-mediated restoration of gene activity, suggesting that the effects we observed were augmented by one or more factors of zebrafish DNA repair systems.
Resumo:
Using a nuclear transplantation approach, the integration and expression of the green fluorescent protein (GFP) gene in the embryogenesis of transgenic leach (Misgurnus anguillicaudatus Cantor) have been studied. The GFP gene expression is first observed at the gastrula stage, which is consistent with the initiation of cell differentiation of fish embryos. The time course of the foreign gene expression is correlated with the regulatory sequences. The expression efficiency also depends on the gene configuration: the expression of pre-integrating circular plasmid at early embryos is higher than that of the linear plasmid. The integration of the GFP gene is first detected at the blastula stage and lasts for quite a long period. When two types of different plasmids are co-injected into fertilized eggs, the behavior of their integration and expression is not identical.
Resumo:
许多人类疾病和微生物抗药性的产生都是由基因组中单个碱基的替换、插入或缺失等基因突变引起的。因此,迫切需要发展快速、高通量基因突变检测方法来实现对基因疾病和细菌抗药性的早期诊断。本研究针对匕述需求发展了纂于DN八错配修复系统的墓因突变检测生物芯片方法。根据DNA错配修复MtltS蛋白结构与功能上的高度保守性,通过PCR从E.coli K-12基因组中扩一增出DNA错配修复基因,甩石(2.56kb)。通过基因水平的分子操纵,构建了Trx-His6-MutS(THM)、Trx-His6-Linker peptide-Muts(THLM)、Trx-His6-GFP-Linker peptide-MutS(THGLM)和Trx-His6-Linker peptide-Strep-tagll-Linker peptide-MutS(THLSLM)的融合基因并在大肠杆菌中进行了IPTG诱导表达。SDS-PAGE分析表明均有一与预期分子量相应的诱导表达条带出现,其表达量占菌体蛋白的30%左右,且以可溶形式存在。融合蛋白中Trx和His6亲和肤能增加表达蛋白的可溶性及便于蛋白的纯化。连接肤的加入增大了融合蛋白各个成分之间的距离,减少空间位阻,使各个蛋白能够较大程度地保持其原有的生物活性。MLltS融合蛋白的生物活性鉴定结果表明:它们既能识别、结合含有错配碱基的DNA双链,又保留了其它融合成分的生物活性。利用融合蛋白THLSLM中的Strep-tagII与Streptavidin相互作用的天然特性,使融合蛋白THLSLM在StrePtavidin修饰过的芯片基质上自动布阵沉积,制作成蛋白质芯片来识别、结合样品中含有错配或未配刘碱基的DNA双链。THGLM、THLM-Cy3和THLSLM能够使MutS蛋白显示不同的标记信号,通过它们识别并结合固定在DNA芯片基质上的基因片段来发展基因突变检测DNA芯片方法。利用基于MutS的蛋白质芯片和DNA芯片方法对含有不同错配类型、不同长度的DNA片段和错配序列背景对错配结合的影响做了深入研究,证明了MutS介导的基因突变检测生物芯片方法的可行性。基于MutS蛋白的鳌因突变检测生物芯片方法借用了生物系统本身的DNA错配修复(Mismatch Repair,MMR)机制。DNA错配修复过程是许多修复蛋白之间的相互作用共同完成的,其中蛋白MutS、MutL和MutH在肠道细菌例如大肠杆菌的甲基定向错配修复中起决定作用。这些修复蛋白的相关研究也引起了越来越多学者的关注,但对于MutL蛋白的体外生物功能一直存在争议,从而限制了该蛋白的应用研究。本研究利用基因的体外拼接技术构建了融合蛋白Trx-Hi56-Linker peptide-MutL(THLL)、Trx-His6-GFP-Linker peptide-MutL(THGLL)和Trx-His6-Linker peptide-Strep-tagII-Linker peptide-MutL(THLSLL)。非变性凝胶电泳鉴定MutL融合蛋白体外生物功能结果表明:THLL、THGLL和THLsLL都能增加融合蛋白Trx-His6-Linker peptide-MutS(THLM)与含有错配碱基DNA双链的结合,但受ATP浓度变化的影响很大。通过融合蛋白THGLL中绿色荧光蛋白(Green Fluorescent Protein,GFP)的荧光信号或THLSLL中Strep-tagII的特性并利用酶学反应来指示该蛋白的存在,发展了体外研究DNA错配修复蛋白MtuS和MutL之间相互作用的简便方法。本研究以构建的MutS融合蛋白为分子识别元件发展了基因突变检测生物芯片并利用构建的MutL融合蛋白发展了体外研究DNA错配修复蛋白MLuS和MutL之间相互作用的简便方法。建立的融合分子系统方法也为研究其它的蛋白质或生物大分子之间的相互作用提供了一个技术平台。此外,本研究构建的融合蛋白THGLL及其 DNA错配修复蛋白与GFP的融合构想还可用来进行DNA错配修复基因产物的表达与基因突变频率和人类肿瘤恶性程度的相关性研究。
Resumo:
Objective To investigate whether the irradiation with C-beam could enhance adenovirus-mediated transfer and expression of p53 in human hepatocellular carcinoma. Materials and methods HepG2 cells were exposed to C-beam or gamma-ray and then infected with replicationdeficient adenovirus recombinant vectors containing human wild-type p53 or green fluorescent protein, respectively. The transfer efficiency and expression level of the exogenous gene were detected by flow cytometric analysis. Cell survival fraction was detected by clonogenic assay. Results The transfer frequency in C-beam or gamma-irradiated groups increased by 50-83% and 5.7-38.0% compared with the control, respectively (P < 0.05). Compared with C-beam alone, p53 alone, and gamma-ray with p53, the percentages of p53 positive cells for 1 Gy C-beam with p53 increased by 56.0-72.0%, 63.5-82.0%, and 31.3-72.5% on first and third day after the treatments, respectively (P < 0.05). The survival fractions for the 2Gy C-bearn and AdCMV-p53 infection groups decreased to similar to 2%. Conclusion C-beam irradiation could significantly promote AdCMV-green fluorescent protein transfer and expression of p53.
Resumo:
The complex copolymer of hyperbranched polyethylenimine (PEI) with hydrophobic poly(gamma-benzyl L-glutamate) segment (PBLG) at their chain ends was synthesized. This water-soluble copolymer PEI-PBLG (PP) was characterized for DNA complexation (gel retardation assay, particle size, DNA release and DNase I protection), cell viability and in vitro transfection efficiency. The experiments showed that PP can effectively condense pDNA into particles. Size measurement of the complexes particles indicated that PP/DNA tended to form smaller nanoparticles than those of PEI/DNA, which was caused by the hydrophobic PBLG segments compressing the PP/DNA complex particles in aqueous solution. The representative average size of PP/DNA complex prepared using plasmid DNA (pEGFP-N1, pDNA) was about 96 nm. The condensed pDNA in the PP/pDNA complexes was significantly protected from enzymatic degradation by DNase1. Cytotoxicity studies by MTT colorimetric assays suggested that the PP had much lower toxicity than PEI. The in vitro transfection efficiency of PP/pDNA complexes improved a lot in HeLa cells, Vero cells and 293T cells as compared to that of PEI25K by the expression of Green Fluorescent Protein (GFP) as determined by flow cytometry. Thus, the water-soluble PP copolymer showed considerable potential as carriers for gene delivery.
Resumo:
Double-stranded RNA (dsRNA) is a virus-associated molecular pattern which induces antiviral innate immune responses and RNA interference (RNAi) in mammals. In invertebrates, RNAi phenomenon has been widely studied, but dsRNA-induced innate immune response is seldom reported. In the present study, two different dsRNAs specific for green fluorescent protein (GFP) and the putative D1 protein of photosystem II (NoPSD) from Nannochloropsis oculata, were employed to challenge Chinese mitten crab Eriocheir sinensis. The temporal changes of phenoloxidase (PO), acid phosphatase (ACP), superoxide dismutase (SOD) and malondialdehyde (MDA) content, as well as the mRNA expression of some immune-related genes were examined in order to estimate the effect of dsRNAs on the innate immunity of E. sinensis. The activities of PO, ACP and SOD significantly increased after dsRNA treatment, whereas malondialdehyde (MDA) content did not change significantly. Among the examined genes, only the mRNA expression of EsALF, an antibacterial peptide in E. sinensis, was significantly up-regulated (about 5 fold, P < 0.05) at 12 h after dsRNA treatment, while no significant expression changes were observed among the other immune genes. The increase of PO, ACP and SOD activities, and mRNA expression level of EsALF after dsRNA stimulation indicate that phenoloxidase, hydrolytic enzyme, antioxidation and EsALF were involved in dsRNA-induced innate immunity, suggesting that broad-spectrum immune responses could be induced by dsRNA in E. sinensis. (C) 2009 Elsevier Ltd. All rights reserved.
Resumo:
Plasmids pG DNA-RZ1 with a GFP (green fluorescent protein) reporter gene and a ribozyme gene incising penaeid white spot baculovirus (WSBV) were first introduced into the fertilized eggs of Chinese shrimps by gene gun. The treated and control samples of different development stages were observed with a fluorescent microscope. The transient expression of GFP gene was high in nauplius and zoea larvae. Results from RT-PCR and PCR for adults showed that the foreign genes had been transferred into the shrimps and had expressed the corresponding proteins. This work has established a transgenic method for penaeid shrimps, which will set base for the application of genetic engineering breeding into industry.
Resumo:
A transient transformation system for the unicellular marine green alga, Platymonas subcordiformis, was established in this study. We introduced the pEGFP-N1 vector into P. subcordiformis with a glass bead method. P. subcordiformis was incubated in cell wall lytic enzymes (abalone acetone powder and cellulase solutions) to degrade the cell wall. The applicable conditions for production of viable protoplasts were pH 6.5, 25 degrees C, and 3 h of enzyme treatment. The protoplast yield was 61.2% when P. subcordiformis cells were added to the enzyme solution at a concentration of 10(7) cell ml(-1). The protoplasts were immediately transformed with the pEGFP-N1 vector using glass-bead method. The transformation frequency was about 10(-5), and there was no GFP activity observed in either the negative or the blank controls. This study indicated that GFP was a sensitively transgenic reporter for P. subcordiformis, and the method of cell wall enzymolysis followed by glass bead agitation was applicable for the transformation of P. subcordiformis.
Resumo:
Due to the increasing incidence of antibiotic resistant strains, the use of novel antimicrobials, such as bacteriocins, has become an ever more likely prospect. Lacticin 3147 (of which there are two components, Ltnα and Ltnβ) and nisin belong to the subgroup of bacteriocins called the lantibiotics, which has attracted much attention in recent years. The lantibiotics are antimicrobial peptides that contain unusual amino acids resulting from a series of enzyme-mediated post translational modifications. Given that there have been relatively few examples of lantibiotic-specific resistance; these antimicrobials appear to represent valid alternatives to classical antibiotics. However, the fact that lantibiotics are naturally only produced in small amounts often hinders their commercialisation. In order to overcome this bottleneck, several approaches can be employed. For example, we can create a situation that reduces the quantity of a lantibiotic required to inhibit a target by combining it with other antimicrobials. Here, following an initial screen involving lacticin 3147 and several classical antibiotics, it was observed between lacticin 3147 and the commercial antibiotics polymyxin B/E function synergistically. This reduced the amounts of the individual antimicrobials required for kill and broadened the spectrum of inhibition of both agents. Upon combination with polymyxins, lacticin 3147, which has been associated with Gram positive targets only, actively targeted Gram negative species such as Escherichia coli and Cronobacter sp. An alternative means of addressing problems associated with lantibiotic yield is to better understand how production is regulated, and ultimately use this information to enhance peptide levels. With this in mind the regulation of lacticin 3147 production from the promoter Pbac was investigated using a green fluorescent protein (GFP) expression reporter system. This revealed that elements within both of the divergent operons of the lacticin 3147 gene cluster are involved in Pbac regulation. That is, LtnR, already established as a negative regulator of itself and the lacticin 3147 associated immunity genes, also acts as an activator of Pbac transcription. In contrast, an enhanced level of expression is observed in the absence of the lacticin 3147 structural genes, ltnA1 and ltnA2, indicating that these genes/gene products are involved in Pbac repression. In fact, through complementation of the ltnA2 gene, it was revealed that this regulation is more likely to be dependent on the presence of the gene transcript rather that the corresponding prepropeptide or modified Ltnβ. It may be that if lacticin 3147 production is successfully enhanced, the ability of the producing cell to protect itself may become an issue. To prepare for such a possibility a bioengineered derivative of the lacticin 3147 immunity protein LtnI (LtnI I81V) which provides enhanced protection was discovered through an in depth investigation involving the site and saturation mutagenesis of this protein. In addition, the creation of truncated forms of LtnI allowed the identification of important and essential regions of this immunity protein. Finally, as mentioned, self-immunity is essential to prevent self-killing. However the discovery of nisin U immunity and regulatory gene homologues (spiFEGRR’K) within the pathogenic strain S. infantarius subsp. infantarius is a cause for concern as it represents an example of immune mimicry, a form of lantibiotic-specific resistance. The ability of spiFEG to confer protection was apparent when they successfully provided protection to nisin A, F, Z, Q and U when expressed heterologously in the nisin sensitive L. lactis HP host. As a consequence of the studies presented in this thesis, it is likely that strategies will emerge that will facilitate the production of greater levels of lacticin 3147 production and lead to enhanced immunity in lactococcal backgrounds. Alternatively the need for enhanced production could be avoided through the use of antimicrobial combinations. In addition, providing awareness of the threats of the emergence of resistance through immune mimicry can allow researchers to develop strategies to prevent this phenomenon from leading to the dissemination of lantibiotic resistance.
Resumo:
Atherosclerosis and arterial injury-induced neointimal hyperplasia involve medial smooth muscle cell (SMC) proliferation and migration into the arterial intima. Because many 7-transmembrane and growth factor receptors promote atherosclerosis, we hypothesized that the multifunctional adaptor proteins beta-arrestin1 and -2 might regulate this pathological process. Deficiency of beta-arrestin2 in ldlr(-/-) mice reduced aortic atherosclerosis by 40% and decreased the prevalence of atheroma SMCs by 35%, suggesting that beta-arrestin2 promotes atherosclerosis through effects on SMCs. To test this potential atherogenic mechanism more specifically, we performed carotid endothelial denudation in congenic wild-type, beta-arrestin1(-/-), and beta-arrestin2(-/-) mice. Neointimal hyperplasia was enhanced in beta-arrestin1(-/-) mice, and diminished in beta-arrestin2(-/-) mice. Neointimal cells expressed SMC markers and did not derive from bone marrow progenitors, as demonstrated by bone marrow transplantation with green fluorescent protein-transgenic cells. Moreover, the reduction in neointimal hyperplasia seen in beta-arrestin2(-/-) mice was not altered by transplantation with either wild-type or beta-arrestin2(-/-) bone marrow cells. After carotid injury, medial SMC extracellular signal-regulated kinase activation and proliferation were increased in beta-arrestin1(-/-) and decreased in beta-arrestin2(-/-) mice. Concordantly, thymidine incorporation and extracellular signal-regulated kinase activation and migration evoked by 7-transmembrane receptors were greater than wild type in beta-arrestin1(-/-) SMCs and less in beta-arrestin2(-/-) SMCs. Proliferation was less than wild type in beta-arrestin2(-/-) SMCs but not in beta-arrestin2(-/-) endothelial cells. We conclude that beta-arrestin2 aggravates atherosclerosis through mechanisms involving SMC proliferation and migration and that these SMC activities are regulated reciprocally by beta-arrestin2 and beta-arrestin1. These findings identify inhibition of beta-arrestin2 as a novel therapeutic strategy for combating atherosclerosis and arterial restenosis after angioplasty.
Resumo:
Using both confocal immunofluorescence microscopy and biochemical approaches, we have examined the role of beta-arrestins in the activation and targeting of extracellular signal-regulated kinase 2 (ERK2) following stimulation of angiotensin II type 1a receptors (AT1aR). In HEK-293 cells expressing hemagglutinin-tagged AT1aR, angiotensin stimulation triggered beta-arrestin-2 binding to the receptor and internalization of AT1aR-beta-arrestin complexes. Using red fluorescent protein-tagged ERK2 to track the subcellular distribution of ERK2, we found that angiotensin treatment caused the redistribution of activated ERK2 into endosomal vesicles that also contained AT1aR-beta-arrestin complexes. This targeting of ERK2 reflects the formation of multiprotein complexes containing AT1aR, beta-arrestin-2, and the component kinases of the ERK cascade, cRaf-1, MEK1, and ERK2. Myc-tagged cRaf-1, MEK1, and green fluorescent protein-tagged ERK2 coprecipitated with Flag-tagged beta-arrestin-2 from transfected COS-7 cells. Coprecipitation of cRaf-1 with beta-arrestin-2 was independent of MEK1 and ERK2, whereas the coprecipitation of MEK1 and ERK2 with beta-arrestin-2 was significantly enhanced in the presence of overexpressed cRaf-1, suggesting that binding of cRaf-1 to beta-arrestin facilitates the assembly of a cRaf-1, MEK1, ERK2 complex. The phosphorylation of ERK2 in beta-arrestin complexes was markedly enhanced by coexpression of cRaf-1, and this effect is blocked by expression of a catalytically inactive dominant inhibitory mutant of MEK1. Stimulation with angiotensin increased the binding of both cRaf-1 and ERK2 to beta-arrestin-2, and the association of beta-arrestin-2, cRaf-1, and ERK2 with AT1aR. These data suggest that beta-arrestins function both as scaffolds to enhance cRaf-1 and MEK-dependent activation of ERK2, and as targeting proteins that direct activated ERK to specific subcellular locations.
Resumo:
The enteroendocrine cell is the cornerstone of gastrointestinal chemosensation. In the intestine and colon, this cell is stimulated by nutrients, tastants that elicit the perception of flavor, and bacterial by-products; and in response, the cell secretes hormones like cholecystokinin and peptide YY--both potent regulators of appetite. The development of transgenic mice with enteroendocrine cells expressing green fluorescent protein has allowed for the elucidation of the apical nutrient sensing mechanisms of the cell. However, the basal secretory aspects of the enteroendocrine cell remain largely unexplored, particularly because a complete account of the enteroendocrine cell ultrastructure does not exist. Today, the fine ultrastructure of a specific cell can be revealed in the third dimension thanks to the invention of serial block face scanning electron microscopy (SBEM). Here, we bridged confocal microscopy with SBEM to identify the enteroendocrine cell of the mouse and study its ultrastructure in the third dimension. The results demonstrated that 73.5% of the peptide-secreting vesicles in the enteroendocrine cell are contained within an axon-like basal process. We called this process a neuropod. This neuropod contains neurofilaments, which are typical structural proteins of axons. Surprisingly, the SBEM data also demonstrated that the enteroendocrine cell neuropod is escorted by enteric glia--the cells that nurture enteric neurons. We extended these structural findings into an in vitro intestinal organoid system, in which the addition of glial derived neurotrophic factors enhanced the development of neuropods in enteroendocrine cells. These findings open a new avenue of exploration in gastrointestinal chemosensation by unveiling an unforeseen physical relationship between enteric glia and enteroendocrine cells.