967 resultados para Granular activated carbon


Relevância:

90.00% 90.00%

Publicador:

Resumo:

The immersion enthalpy of activated carbon in 3-chlorophenol solutions, of 100 mg L-1, is determined at different pH values between 3 and 11 with results between 37.6 and 21.2 J g-1. The 3-chlorophenol adsorbed quantities on the activated carbon during the calorimetric experience, are between 1.13 and 2.19 mg g-1, for different pH values of the solution. The 3-chlorophenol adsorbed quantity and the immersion enthalpy decrease by increasing of the pH solution, while increasing the adsorbed quantity increases the immersion enthalpy value.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

In this study, Disc and honeycomb-shaped activated carbon monoliths were obtained using as a precursor coconut shell, without the use of any binder. Textural characterization was performed by adsorption of N2 at 77 K and immersion calorimetry into benzene. The experimental results showed that the activation with zinc chloride produces a wide development of micropores, yielding micropore volumes between 0,38 and 0,79 cm³ g-1, apparent BET surface area between 725 and 1523 m² g-1 and immersion enthalpy between 73,5 and 164,2 J g-1.Were made comparisons between textural parameters and energy characteristics.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Data of methylene blue number and iodine number of activated carbons samples were calibrated against the respective surface area, micropore volume and total pore volume using multiple regression. The models obtained from the calibrations were used in predicting these physical properties of a test group of activated carbon samples produced from several raw materials. In all cases, the predicted values were in good agreement with the expected values. The method allows extracting more information from the methylene blue and iodine adsorption studies than normally obtained with this type of material.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Electrochemical double-layer supercapacitors have an intermediate position between rechargeable batteries, which can store high amounts of energy, and dielectric capacitors, which have high output power. Supercapacitors are widely suggested to be used in automobiles (recuperation during braking, facilitate engine starting, electric stabilization of the system), industry (forklifts, elevators), hybrid off-road machinery and also in consumer electronics. Supercapacitor electrodes require highly porous material. Typically, activated carbon is used. Specific surface area of activated carbon is approximately 1000 m2 per gram. Carbon nanotubes represent one of prospective materials. According to numerous studies this material allows to improve the properties of supercapacitors. The task of this Master‘s Thesis was to test multiwalled carbon nanotubes and become confident with the testing methods.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Käänteisosmoosisuodatusta käytetään erityisesti teollisuuden jätevesien loppupuhdistuksessa. Suodatuksen ongelmana on kalvojen likaantuminen ja tukkiutuminen. Tässä työssä on aiempia tutkimuksia hyväksikäyttäen tutkittu käänteisosmoosiin tulevan veden esikäsittelemistä niin, että kalvojen likaantumiselta vältyttäisiin. Menetelmien vertailussa on käytetty erilaisia veden laadusta kertovia parametreja. Ongelmallisimmiksi aineksiksi huomattiin orgaaninen aines ja jotkin veteen liuenneet ionit. Kiintoaineen erottaminen ei ole ollut suuri ongelma, sillä sen saa poistettua tavallisesti käytetyillä rakeissuodatuksella, laskeutuksella, flotaatiolla ja kalvosuodatuksella. Orgaanista ainesta on saatu erotettua erityisesti hapettamalla, aktiivilieteprosessilla ja biologisella aktiivihiilisuodattimella. Mikro- ja ultrasuodatusta käytetään usein juuri ennen käänteisosmoosia poistamaan erityisesti kolloidista materiaalia ja joitain liuenneita ioneja. Flokkien muodostaminen koagulaatiossa ja flokkulaatiossa parantaa lähes kaikkien menetelmien toimivuutta selvästi. Veden puhdistuksessa käytetyt kemikaalit voivat myös liika-annosteltuina liata kalvoja. Vesien pitoisuuksissa eri ainesten osalta on huomattavia eroja, joten puhdistettava vesi on hyvä analysoida etukäteen parhaiden käsittelymenetelmien valitsemiseksi.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

The pathogenesis of hepatic encephalopathy is multifactorial, involving gut-derived toxins such as ammonia, which has been demonstrated to induce oxidative stress. Therefore, a primary hepatic encephalopathy treatment target is reducing ammonia production in the gastrointestinal tract. AST-120, an oral adsorbent of engineered activated carbon microspheres with surface areas exceeding 1600 m(2) /g, acts as a sink for neurotoxins and hepatotoxins present in the gut. We evaluated the capacity of AST-120 to adsorb ammonia in vitro and to lower blood ammonia, oxidative stress and brain edema in cirrhotic rats. Cirrhosis was induced in rats by bile duct ligation for 6 weeks. AST-120 was administered by gavage preventively for 6 weeks (0.1, 1, and 4 g/kg/day). In addition, AST-120 was evaluated as a short-term treatment for 2 weeks and 3 days (1 g/kg/day) and as a sink to adsorb intravenously infused ammonium acetate. In vitro, AST-120 efficiently adsorbed ammonia. Ammonia levels significantly decreased in a dose-dependent manner for all AST-120-treated bile duct-ligated rats (nontreated: 177.3 ± 30.8 μM; AST-120, 0.1 g/kg/day: 121.9 ± 13.8 μM; AST-120, 1 g/kg/day: 80.9 ± 30.0 μM; AST-120, 4 g/kg/day: 48.8 ± 19.6 μM) and significantly correlated with doses of AST-120 (r = -0.6603). Brain water content and locomotor activity normalized after AST-120 treatments, whereas arterial reactive oxygen species levels remained unchanged. Furthermore, AST-120 significantly attenuated a rise in arterial ammonia after ammonium acetate administration (intravenously). Conclusion:AST-120 treatment decreased arterial ammonia levels, normalized brain water content and locomotor activity but did not demonstrate an effect on systemic oxidative stress. Also, AST-120 acts as an ammonia sink, efficiently removing blood-derived ammonia. Additional studies are warranted to evaluate the effects of AST-120 on hepatic encephalopathy in patients with advanced liver disease. (HEPATOLOGY 2011;).

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Using the plausible model of activated carbon proposed by Harris and co-workers and grand canonical Monte Carlo simulations, we study the applicability of standard methods for describing adsorption data on microporous carbons widely used in adsorption science. Two carbon structures are studied, one with a small distribution of micropores in the range up to 1 nm, and the other with micropores covering a wide range of porosity. For both structures, adsorption isotherms of noble gases (from Ne to Xe), carbon tetrachloride and benzene are simulated. The data obtained are considered in terms of Dubinin-Radushkevich plots. Moreover, for benzene and carbon tetrachloride the temperature invariance of the characteristic curve is also studied. We show that using simulated data some empirical relationships obtained from experiment can be successfully recovered. Next we test the applicability of Dubinin's related models including the Dubinin-Izotova, Dubinin-Radushkevich-Stoeckli, and Jaroniec-Choma equations. The results obtained demonstrate the limits and applications of the models studied in the field of carbon porosity characterization.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Nanocomposites of carbon nanotubes and titanium dioxide (TiO(2)) have attracted much attention due to their photocatalytic properties. Although many examples in the literature have visualized these nanocomposites by electron microscopic images, spectroscopic characterization is still lacking with regard to the interaction between the carbon nanotube and TiO(2). In this work, we show evidence of the attachment of nanostructured TiO(2) to multiwalled carbon nanotubes(MWNTs) by Raman spectroscopy. The nanostructured TiO(2) was characterized by both full-width at half-maximum (FWHM) and the Raman shift of the TiO(2) band at ca 144 cm(-1), whereas the average diameter of the crystallite was estimated as approximately 7 nm. Comparison of the Raman spectra of the MWNTs and MWNTs/TiO(2) shows a clear inversion of the relative intensities of the G and D bands, suggesting a substantial chemical modification of the outermost tubes due to the attachment of nanostructured TiO(2). To complement the nanocomposite characterization, scanning electronic microscopy and X-ray diffraction were performed. Copyright (C) 2011 John Wiley & Sons, Ltd.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Slow sand filtration is an efficient water treatment technique used for treating surface water with relatively low levels of contamination. Despite the slow sand filtration at pathogen, algae and cyanobacteria removal efficiency, it has some restrictions in relation to the required area for slow filters, and the cleaning activities for the filters and the stone pre-filters when used in the treatment. This research evaluated during 120 days the use of non woven & sand pre-filtration columns as part of a slow filtration process for the apparent color, turbidity, algae, cyanobacteria, phytoflagellates and diatomaceous. The columns shown an efficient removal of the monitored parameters and demonstrated as a vantage their faster and easier cleaning process and less awkward than the required to the stone pre-filters. The turbidity removal efficiency increased progressively during the experiment, especially after the first 35 days of the start; the apparent color removal by the pre-filtration columns was of 85%, and working together with the polishing of activated carbon columns was up to 95; the diatomaceous, phytoflagellates, algae and cyanobacteria removal by the columns achieve a weekly average of 95%, its recommended to use filtration rates lower to 1,5m(3)/m(2)/d.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

A filtração em múltiplas etapas (FiME) se apresenta como uma alternativa para realizar o tratamento de água de comunidades de pequeno porte, entretanto, a eficiência quanto à remoção de cor verdadeira associada ao carbono orgânico dissolvido (COD) ou às substâncias húmicas, tem sido questionada ou relatada como baixa. A presente pesquisa avaliou a remoção de substâncias húmicas na FiME com pré-oxidação, com ozônio e peróxido de hidrogênio, utilizando para essa avaliação parâmetros indiretos como cor verdadeira, absorvância UV (254 nm) e COD. Foram realizados cinco ensaios, utilizando quatro filtros lentos, sendo dois com camada de carvão ativado granular (CAG). Foram ensaiadas várias alternativas de pré-oxidação com ozônio e peróxido de hidrogênio. Foram obtidos bons resultados, tendo como principal conclusão que os filtros lentos com CAG, precedidos de oxidação com ozônio e depois peróxido de hidrogênio, apresentaram remoção média de cor verdadeira de 64%, mas que o peróxido de hidrogênio afeta o desenvolvimento da camada biológica, interferindo no desenvolvimento da perda de carga, na remoção de turbidez, na remoção de coliformes e na remoção de substâncias húmicas.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Electrochemical capacitors (ECs), also known as supercapacitors or ultracapacitors, are energy storage devices with properties between batteries and conventional capacitors. EC have evolved through several generations. The trend in EC is to combine a double-layer electrode with a battery-type electrode in an asymmetric capacitor configuration. The double-layer electrode is usually an activated carbon (AC) since it has high surface area, good conductivity, and relatively low cost. The battery-type electrode usually consists of PbO2 or Ni(OH)2. In this research, a graphitic carbon foam was impregnated with Co-substituted Ni(OH)2 using electrochemical deposition to serve as the positive electrode in the asymmetric capacitor. The purpose was to reduce the cost and weight of the ECs while maintaining or increasing capacitance and gravimetric energy storage density. The XRD result indicated that the nickel-carbon foam electrode was a typical α-Ni(OH)2. The specific capacitance of the nickel-carbon foam electrode was 2641 F/g at 5 mA/cm2, higher than the previously reported value of 2080 F/g for a 7.5% Al-substituted α-Ni(OH)2 electrode. Three different ACs (RP-20, YP-50F, and Ketjenblack EC-600JD) were evaluated through their morphology and electrochemical performance to determine their suitability for use in ECs. The study indicated that YP-50F demonstrated the better overall performance because of the combination of micropore and mesopore structures. Therefore, YP-50F was chosen to combine with the nickel-carbon foam electrode for further evaluation. Six cells with different mass ratios of negative to positive active mass were fabricated to study the electrochemical performance. Among the different mass ratios, the asymmetric capacitor with the mass ratio of 3.71 gave the highest specific energy and specific power, 24.5 W.h/kg and 498 W/kg, respectively.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

A gold thiosulfate leaching process uses carbon to remove gold from the leach liquor. The activated carbon is pretreated with copper cyanide. A copper (on the carbon) to gold (in solution) ration of at least 1.5 optimizes gold recovery from solution. To recover the gold from the carbon, conventional elution technology works but is dependent on the copper to gold ratio on the carbon.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

In the present work we study the hydroxide activation (NaOH and KOH) of phenol-formaldehyde resin derived CNFs prepared by a polymer blend technique to prepare highly porous activated carbon nanofibres (ACNFs). Morphology and textural characteristics of these ACNFs were studied and their hydrogen storage capacities at 77 K (at 0.1 MPa and at high pressures up to 4 MPa) were assessed, and compared, with reported capacities of other porous carbon materials. Phenol-formaldehyde resin derived carbon fibres were successfully activated with these two alkaline hydroxides rendering highly microporous ACNFs with reasonable good activation process yields up to 47 wt.% compared to 7 wt.% yields from steam activation for similar surface areas of 1500 m2/g or higher. These nano-sized activated carbons present interesting H2 storage capacities at 77 K which are comparable, or even higher, to other high quality microporous carbon materials. This observation is due, in part, to their nano-sized diameters allowing to enhance their packing densities to 0.71 g/cm3 and hence their resulting hydrogen storage capacities.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

The effect of surface chemistry (nature and amount of oxygen groups) in the removal of ammonia was studied using a modified resin-based activated carbon. NH3 breakthrough column experiments show that the modification of the original activated carbon with nitric acid, that is, the incorporation of oxygen surface groups, highly improves the adsorption behavior at room temperature. Apparently, there is a linear relationship between the total adsorption capacity and the amount of the more acidic and less stable oxygen surface groups. Similar experiments using moist air clearly show that the effect of humidity highly depends on the surface chemistry of the carbon used. Moisture highly improves the adsorption behavior for samples with a low concentration of oxygen functionalities, probably due to the preferential adsorption of ammonia via dissolution into water. On the contrary, moisture exhibits a small effect on samples with a rich surface chemistry due to the preferential adsorption pathway via Brønsted and Lewis acid centers from the carbon surface. FTIR analyses of the exhausted oxidized samples confirm both the formation of NH4+ species interacting with the Brønsted acid sites, together with the presence of NH3 species coordinated, through the lone pair electron, to Lewis acid sites on the graphene layers.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Alkaline hydroxides, especially sodium and potassium hydroxides, are multi-million-ton per annum commodities and strong chemical bases that have large scale applications. Some of them are related with their consequent ability to degrade most materials, depending on the temperature used. As an example, these chemicals are involved in the manufacture of pulp and paper, textiles, biodiesels, soaps and detergents, acid gases removal (e.g., SO2) and others, as well as in many organic synthesis processes. Sodium and potassium hydroxides are strong and corrosive bases, but they are also very stable chemicals that can melt without decomposition, NaOH at 318ºC, and KOH at 360ºC. Hence, they can react with most materials, even with relatively inert ones such as carbon materials. Thus, at temperatures higher than 360ºC these melted hydroxides easily react with most types of carbon-containing raw materials (coals, lignocellulosic materials, pitches, etc.), as well as with most pure carbon materials (carbon fibers, carbon nanofibers and carbon nanotubes). This reaction occurs via a solid-liquid redox reaction in which both hydroxides (NaOH or KOH) are converted to the following main products: hydrogen, alkaline metals and alkaline carbonates, as a result of the carbon precursor oxidation. By controlling this reaction, and after a suitable washing process, good quality activated carbons (ACs), a classical type of porous materials, can be prepared. Such carbon activation by hydroxides, known since long time ago, continues to be under research due to the unique properties of the resulting activated carbons. They have promising high porosity developments and interesting pore size distributions. These two properties are important for new applications such as gas storage (e.g., natural gas or hydrogen), capture, storage and transport of carbon dioxide, electricity storage demands (EDLC-supercapacitors-) or pollution control. Because these applications require new and superior quality activated carbons, there is no doubt that among the different existing activating processes, the one based on the chemical reaction between the carbon precursor and the alkaline hydroxide (NaOH or KOH) gives the best activation results. The present article covers different aspects of the activation by hydroxides, including the characteristics of the resulting activated carbons and their performance in some environment-related applications. The following topics are discussed: i) variables of the preparation method, such as the nature of the hydroxide, the type of carbon precursor, the hydroxide/carbon precursor ratio, the mixing procedure of carbon precursor and hydroxide (impregnation of the precursor with a hydroxide solution or mixing both, hydroxide and carbon precursor, as solids), or the temperature and time of the reaction are discussed, analyzing their effect on the resulting porosity; ii) analysis of the main reactions occurring during the activation process, iii) comparative analysis of the porosity development obtained from different activation processes (e.g., CO2, steam, phosphoric acid and hydroxides activation); and iv) performance of the prepared activated carbon materials on a few applications, such as VOC removal, electricity and gas storages.