914 resultados para Grain crushing
Resumo:
Dark brown sediment with clasts ranging from small to large. Clast shape ranges from angular to sub-rounded. Rotation structures and comet structures can be commonly seen throughout the sample. Lineations along with minor amounts of grain crushing can also be seen in this sample.
Resumo:
Dark grey sediment with clasts ranging from small to large. Clast shape ranges from angular to sub-rounded in shape. Lineations are abundant in this sample. Comet structures can also be seen . There are minor amounts of rotation structures in this sample, and some clasts have faint rotation structures surrounding them. Minor amounts of grain crushing can also be seen.
Resumo:
Brown sediment with well dispersed clasts ranging from small to large. Clast shape ranges from angular to sub-rounded. Lineations and rotation structures can be seen in this sample. Minor amounts of edge-to-edge grain crushing can also be seen.
Resumo:
Brown sediment with clasts ranging from small to large. The clast shape ranges from angular to sub-rounded. The clasts are generally well dispersed but edge-to-edge grain crushing is present. A few lineations and faint rotation structures can also be seen.
Resumo:
Dark brown sediment with clasts ranging from small to large. Clast shape ranges from angular to sub-rounded. Grain crushing is abundant throughout this sample. A few lineations can also be seen.
Resumo:
Brown sediment with clasts ranging from small to large in size. Clast shape ranges from angular to sub-rounded. Lineations and rotation structures can be commonly seen throughout the sample. Minor amounts of comet structures, grain crushing and grain stacking can also be seen.
Resumo:
Dark brown sediment with clasts ranging from small to large. The sample is mostly made up of large clasts. Clast shape ranges from angular to sub-angular. Necking structures are common throughout this sample and can mainly be seen between larger aggregates. Edge-to-edge grain crushing, crushed grains, and some lineations can also be seen.
Resumo:
Light brown sediment with clasts ranging from small to large in size. Clast shape ranges from angular to sub-rounded. Grain crushing is present in this sample, along with grain stacking. Minor amounts of lineations, and faint rotation structures can also be seen.
Resumo:
Brown sediment with clasts ranging from small to large. Clast shape ranges from angular to rounded. Lineations and comet structures are abundant throughout this sample. It also contains rotation structures and minor amounts of grain crushing.
Resumo:
Brown sediment with clasts ranging from small to large. Clast shape ranges from angular to sub-rounded. Lineations are common throughout the sample. This sample also contains a clay domain, that appears very fine grained. Edge-to-edge grain crushing, comet structures, and rotation structures are also present.
Resumo:
Brown sediment with inclusions of a clay rich domain. Clasts range from small to medium in size and angular to sub-rounded in shape. Lineations can be commonly seen throughout the sample, along with water escape structures in the clay rich domain. Rotation structures, comet structures, and grain crushing are also present.
Resumo:
Sediment composition is mainly controlled by the nature of the source rock(s), and chemical (weathering) and physical processes (mechanical crushing, abrasion, hydrodynamic sorting) during alteration and transport. Although the factors controlling these processes are conceptually well understood, detailed quantification of compositional changes induced by a single process are rare, as are examples where the effects of several processes can be distinguished. The present study was designed to characterize the role of mechanical crushing and sorting in the absence of chemical weathering. Twenty sediment samples were taken from Alpine glaciers that erode almost pure granitoid lithologies. For each sample, 11 grain-size fractions from granules to clay (ø grades <-1 to >9) were separated, and each fraction was analysed for its chemical composition. The presence of clear steps in the box-plots of all parts (in adequate ilr and clr scales) against ø is assumed to be explained by typical crystal size ranges for the relevant mineral phases. These scatter plots and the biplot suggest a splitting of the full grain size range into three groups: coarser than ø=4 (comparatively rich in SiO2, Na2O, K2O, Al2O3, and dominated by “felsic” minerals like quartz and feldspar), finer than ø=8 (comparatively rich in TiO2, MnO, MgO, Fe2O3, mostly related to “mafic” sheet silicates like biotite and chlorite), and intermediate grains sizes (4≤ø <8; comparatively rich in P2O5 and CaO, related to apatite, some feldspar). To further test the absence of chemical weathering, the observed compositions were regressed against three explanatory variables: a trend on grain size in ø scale, a step function for ø≥4, and another for ø≥8. The original hypothesis was that the trend could be identified with weathering effects, whereas each step function would highlight those minerals with biggest characteristic size at its lower end. Results suggest that this assumption is reasonable for the step function, but that besides weathering some other factors (different mechanical behavior of minerals) have also an important contribution to the trend. Key words: sediment, geochemistry, grain size, regression, step function
Resumo:
This paper presents a novel extraction device for water and noble gases from speleothem samples for noble gas paleotemperature determination. The “combined vacuum crushing and sieving (CVCS) system” was designed to reduce the atmospheric noble gas contents from air inclusions in speleothem samples by up to 2 orders of magnitude without adsorbing atmospheric noble gases onto the freshly produced grain surfaces, a process that had often hampered noble gas temperature (NGT) determination in the past. We also present the results from first performance tests of the CVCS system processing stalagmite samples grown at a known temperature. This temperature is reliably reproduced by the NGTs derived from Ar, Kr, and Xe extracted from the samples. The CVCS system is, therefore, suitable for routine determinations of accurate NGTs. In combination with stalagmite dating, these NGTs will allow reconstructing past regional temperature evolutions, and also support the interpretation of the often complex stable isotope records preserved in the stalagmites' calcite.
Resumo:
This paper presents a novel extraction device for water and noble gases from speleothem samples for noble gas paleotemperature determination. The “combined vacuum crushing and sieving (CVCS) system” was designed to reduce the atmospheric noble gas contents from air inclusions in speleothem samples by up to 2 orders of magnitude without adsorbing atmospheric noble gases onto the freshly produced grain surfaces, a process that had often hampered noble gas temperature (NGT) determination in the past. We also present the results from first performance tests of the CVCS system processing stalagmite samples grown at a known temperature. This temperature is reliably reproduced by the NGTs derived from Ar, Kr, and Xe extracted from the samples. The CVCS system is, therefore, suitable for routine determinations of accurate NGTs. In combination with stalagmite dating, these NGTs will allow reconstructing past regional temperature evolutions, and also support the interpretation of the often complex stable isotope records preserved in the stalagmites' calcite.
Resumo:
Composition, grain-size distribution, and areal extent of Recent sediments from the Northern Adriatic Sea along the Istrian coast have been studied. Thirty one stations in four sections vertical to the coast were investigated; for comparison 58 samples from five small bays were also analyzed. Biogenic carbonate sediments are deposited on the shallow North Adriatic shelf off the Istrian coast. Only at a greater distance from the coast are these carbonate sediments being mixed with siliceous material brought in by the Alpine rivers Po, Adige, and Brenta. Graphical analysis of grain-size distribution curves shows a sediment composition of normally three, and only in the most seaward area, of four major constituents. Constituent 1 represents the washed-in terrestrial material of clay size (Terra Rossa) from the Istrian coastal area. Constituent 2 consists of fine to medium sand. Constituent 3 contains the heterogeneous biogenic material. Crushing by organisms and by sediment eaters reduces the coarse biogenic material into small pieces generating constituent 2. Between these two constituents there is a dynamic equilibrium. Depending upon where the equilibrium is, between the extremes of production and crushing, the resulting constituent 2 is finer or coarser. Constituent 4 is composed of the fine sandy material from the Alpine rivers. In the most seaward area constituents 2 and 4 are mixed. The total carbonate content of the samples depends on the distance from the coast. In the near coastal area in high energy environments, the carbonate content is about 80 %. At a distance of 2 to 3 km from the coast there is a carbonate minimum because of the higher rate of sedimentation of clay-sized terrestrial, noncarbonate material at extremely low energy environments. In an area between 5 and 20 km off the coast, the carbonate content is about 75 %. More than 20 km from the shore, the carbonate content diminishes rapidly to values of about 30 % through mixing with siliceous material from the Alpine rivers. The carbonate content of the individual fractions increases with increasing grain-size to a maximum of about 90 % within the coarse sand fractions. Beyond 20 km from the coast the samples show a carbonate minimum of about 13 % within the sand-size classes from 1.5 to 0.7 zeta¬? through mixing with siliceous material from the alpine rivers. By means of grain-size distribution and carbonate content, four sediment zones parallel to the coast were separated. Genetically they are closely connected with the zonation of the benthic fauna. Two cores show a characteristic vertical distribution of the sediment. The surface zone is inversely graded, that means the coarse fractions are at the top and the fine fractions are at the bottom. This is the effect of crushing of the biogenic material produced at the surface by predatory organisms and by sediment eaters. lt is proposed that at a depth of about 30 cm a chemical solution process begins which leads to diminution of the original sediment from a fine to medium sand to a silt. The carbonate content decreases from about 75 % at the surface to 65 % at a depth of 100 cm. The increase of the noncarbonate components by 10 % corresponds to a decrease in the initial amount of sediment (CaC03=75 %) by roughly 30 % through solution. With increasing depth the carbonate content of the individual fractions becomes more and more uniform. At the surface the variation is from 30 % to 90 %, at the bottom it varies only between 50 % and 75 %. Comparable investigations of small-bay sediments showed a c1ear dependence of sediment/faunal zonation from the energy of the environment. The investigations show that the composition and three-dimensional distribution of the Istrian coastal sediments can not be predicted only from one or a few measurable factors. Sedimentation and syngenetic changes must be considered as a complex interaction between external factors and the actions of producing and destroying organisms that are in dynamic equilibrium. The results obtained from investigations of these recent sediments may be of value for interpreting fossil sediments only with strong limitations.