999 resultados para Grain Refinement


Relevância:

60.00% 60.00%

Publicador:

Resumo:

Asymmetric rolling (ASR) is a potential process to reach better grain refinement than in conventional rolling, thus, can lead to better mechanical properties. It is not known, however, how the introduction of a shear component will change the ideal orientations of the textures, and consequently, the evolution of plastic anisotropy. To understand the effect of the added shear on texture evolution in ASR, a stability analysis is carried out in orientation space and the variations in the position and strength of the ideal orientations are analysed as a function of the shear component. Then, modelling of R values is presented for various cases. On that basis, it is shown that there is an upper limit for the shear component in asymmetric rolling that still retains the 〈1 1 1〉 ND fibre (ND: direction normal to the sheet) which is good for formability. It is also found that better persistence of the ND fibre can be obtained by cyclically alternating the shear component. The theoretical results are well supported by comparison to experimental evidences. © 2011 Elsevier B.V. All rights reserved.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Machining of titanium is quite difficult and expensive. Heat generated in the process of cutting does not dissipate quickly, which affects tool life. In the last decade ultra fine grained (UFG) titanium has emerged as an option for substitution for more expensive titanium alloys. Extreme grain refinement can be readily performed by severe plastic deformation techniques. Grain refinement of a material achieved in this way was shown to change its mechanical and physical properties. In the present study, the microstructure evolution and the shear band formation in chips of coarse grained and UFG titanium machined to three different depths and three different feeding rates was investigated. A change in thermal characteristics of commercial purity Ti with grain refinement was studied by comparing heating/cooling measurements with an analytical solution of the heat transfer boundary problem. It was demonstrated that an improvement in the machinability can be expected for UFG titanium. © 2012 Springer Science+Business Media, LLC.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

In this work, compaction by warm equal-channel angular pressing (ECAP) with back pressure was used to produce Ti-6Al-4V billets from both commercially pure (CP) titanium and titanium hydride (TiH 2) powders, which were mixed with pulverised binary Al-V master alloys of two distinct Al/V ratios and with elemental aluminium powder to arrive at the nominal alloy composition. It was demonstrated that the right combination of temperature, high hydrostatic pressure and plastic shear deformation permits consolidation of the powder mixture to maximum green densities of 99.26%. Moreover, after direct compaction of blended elemental powders by equal-channel angular pressing (ECAP) with back pressure, the sintering temperature required for chemical and microstructural homogenisation of the compacts could be reduced by 150-250°C. This was possible due to high green density, increased contact area between powder particles and the formation of fast diffusion paths associated with grain refinement by severe plastic deformation. The sintered Ti-6Al-4V billets exhibited a maximum density of 99.88%, Vickers hardness of 409-445 HV1 and ultimate tensile strength in the range of 1000-1080MPa. In contrast to findings of other authors, the use of TiH 2 powders in conjunction with ECAP processing did not bring any benefits with regard to the production of the Ti-6Al-4V alloy.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Commercial purity titanium with an average grain size in the low sub-micron range was produced by equal channel angular pressing (ECAP). Attachment of human bone marrow-derived mesenchymal stem cells (hMSCs) to the surface of conventional coarse grained and ECAP-modified titanium was studied. It was demonstrated that the attachment and spreading of hMSCs in the initial stages (up to 24h) of culture was enhanced by grain refinement. Surface characterization by a range of techniques showed that the main factor responsible for the observed acceleration of hMSC attachment and spreading on titanium due to grain refinement in the bulk is the attendant changes in surface topography on the nanoscale. These results indicate that, in addition to its superior mechanical properties, ECAP-modified titanium possesses improved biocompatibility, which makes it to a potent candidate for applications in medical implants.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The microstructure, fatigue crack growth behaviour and hardness of ultra fine grained 6061 aluminium alloy obtained by equal angle channel processing was studied. ECAP resulted in significant grain refinement down to the sub micron level and corresponding increase in hardness. Results point to a similar fatigue threshold stress intensity range and fatigue crack growth rates for 1, 2, 4 and 6 passes of ECAP.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

In this work, a high-manganese Fe-23Mn-1.5Al-0.3C Twinning-Induced Plasticity (TWIP) steel was subjected to plastic shear deformation using Equal-Channel Angular Pressing (ECAP) at 300 °C following route BC and additional annealing. The microstructure evolution during both deformation by ECAP and subsequent annealing was investigated and correlated with the mechanical properties. The successive grain refinement during ECAP was promoted by two parallel mechanisms, namely dislocation driven grain fragmentation and twin fragmentation, and accounted for the ultra-high strength. In addition, due to the relatively low volume fraction of deformation twins after ECAP at 300 °C, further contribution of deformation twinning during room temperature deformation allowed additional work-hardening capacity and elongation. During subsequent recovery annealing the ultra-fine grains and deformation twins were thermally stable, which supported retainment of the high yield strength along with regained uniform elongation. For the first time, the texture evolution during ECAP and during the following heat treatment was analyzed. After 1, 2, and 4 ECAP passes a transition texture with the characteristic texture components of both high- and low-SFE materials developed. During the following heat treatment the texture evolution proceeded similar to that observed in the same material after cold rolling. Retaining of the ECAP texture components due to oriented nucleation at grain boundaries and triple junctions as well as annealing twinning accounted for the formation of a weak, retained ECAP texture after recrystallization.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The influence of the ultrafine crystallinity of commercial purity grade 2 (as-received) titanium and titanium modified by equal channel angular pressing (modified titanium) on bacterial attachment was studied. A topographic profile analysis of the surface of the modified titanium revealed a complex morphology of the surface. Its prominent micro- and nano-scale features were 100-200-nm-scale undulations with 10-15 microm spacing. The undulating surfaces were nano-smooth, with height variations not exceeding 5-10 nm. These surface topography characteristics were distinctly different from those of the as-received samples, where broad valleys (up to 40-60 microm) were detected, whose inner surfaces exhibited asperities approximately 100 nm in height spaced at 1-2 microm. It was found that each of the three bacteria strains used in this study as adsorbates, viz. Staphylococcus aureus CIP 68.5, Pseudomonas aeruginosa ATCC 9025 and Escherichia coli K12, responded differently to the two types of titanium surfaces. Extreme grain refinement by ECAP resulted in substantially increased numbers of cells attached to the surface compared to as-received titanium. This enhanced degree of attachment was accompanied with an increased level of extracellular polymeric substances (EPS) production by the bacteria.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Strain history, microstructure and texture were studied in an aluminum alloy processed by the recently proposed process of non-equal channel angular pressing (NECAP). Comparison with alloy processed by equal channel angular pressing (ECAP) has been performed. A much finer microstructure was obtained in NECAP, showing that in this modified ECAP test the grain-refinement process was more efficient. The results indicate that the NECAP test has some interesting features that may be of interest for further research.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Hot deformation behavior and microstructure evolution of a coarse grain metastable beta titanium alloy (Ti-5Al-5Mo-5V-3Cr) was investigated using uniaxial compression testing followed by a subsequent beta annealing treatment. Compression testing was carried out at 720 °C and strain rates between 0.001-10 s-1 on samples with beta annealed condition and aged microstructure containing high volume fraction of relatively large alpha precipitates. The peak load of the aged samples are higher than the non-aged specimens but they show rather similar steady state flow stress. The subsequent beta annealing treatment on the compressed aged samples leads to breaking down the ingot microstructure and formation of a fully recrystallized beta phase with massive grain refinement (order of millimeter to ∼100 μm). However, after annealing such grain refinement is not seen for the non-aged samples except at high strain rates that showed partial and local recrystallization.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

In the current study, the effect of deformation mode (i.e., symmetric vs asymmetric rolling) on the extent of grain refinement and texture development in Ti-6Al-4V was examined through warm rolling of a martensitic starting microstructure. During rolling, the initial martensitic lath structure was progressively fragmented, primarily through continuous dynamic recrystallization. This eventually led to an ultrafine-grained (UFG) microstructure composed of equiaxed grains with a mean size of 180 to 230 nm, mostly surrounded by high-angle grain boundaries. Depending on the rolling reduction and deformation mode (symmetric and asymmetric), the rolled specimens displayed different layer morphologies throughout the specimen thickness: a fully UFG surface layer, a partial UFG transition layer, and a partially fragmented lath interior layer. Due to a higher level of effective strain and continuous rotation of the principle axis, asymmetric rolling resulted in a greater extent of grain refinement compared with symmetric rolling at a given thermomechanical condition. A bulk UFG structure was successfully obtained using 70 pct asymmetric rolling. In addition, the rolling texture exhibited various characteristics throughout the thickness due to a different combination of shear and compressive strains. Principally, the basal texture component was displaced from the normal toward rolling direction during asymmetric rolling, differing from the symmetric rolling textures.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Refinement of the internal grain size leads to strengthening by retarding dislocation motion. There have also been recent reports that a reduction in external diameter enhances the strength of single crystal pillars. Here we show, in a hitherto unexplored domain, a synergistic increase in strength by a combined reduction in internal (0.5 mu m) and external (20-50 mu m) dimensions, with strengths at failure approaching the theoretical value. (c) 2012 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Samarium doped barium zirconate titanate ceramics with general formula Ba1-x Sm-2x/3](Zr0.05Ti0.95)O-3 x = 0, 0.01, 0.02, and 0.03] were prepared by high energy ball milling method. X-ray diffraction patterns and micro-Raman spectroscopy confirmed that these ceramics have a single phase with a tetragonal structure. Rietveld refinement data were employed to model BaO12], SmO12], ZrO6], and TiO6] clusters in the lattice. Scanning electron microscopy shows a reduction in average grain size with the increase of Sm3+ ions into lattice. Temperature-dependent dielectric studies indicate a ferroelectric phase transition and the transition temperature decreases with an increase in Sm3+ ion content. The nature of the transition was investigated by the Curie-Weiss law and it is observed that the diffusivity increases with Sm3+ ion content. The ferroelectric hysteresis loop illustrates that the remnant polarization and coercive field increase with an increase in Sm3+ ions content. Optical properties of the ceramics were studied using ultraviolet-visible diffuse reflectance spectroscopy.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Protein structure prediction has remained a major challenge in structural biology for more than half a century. Accelerated and cost efficient sequencing technologies have allowed researchers to sequence new organisms and discover new protein sequences. Novel protein structure prediction technologies will allow researchers to study the structure of proteins and to determine their roles in the underlying biology processes and develop novel therapeutics.

Difficulty of the problem stems from two folds: (a) describing the energy landscape that corresponds to the protein structure, commonly referred to as force field problem; and (b) sampling of the energy landscape, trying to find the lowest energy configuration that is hypothesized to be the native state of the structure in solution. The two problems are interweaved and they have to be solved simultaneously. This thesis is composed of three major contributions. In the first chapter we describe a novel high-resolution protein structure refinement algorithm called GRID. In the second chapter we present REMCGRID, an algorithm for generation of low energy decoy sets. In the third chapter, we present a machine learning approach to ranking decoys by incorporating coarse-grain features of protein structures.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The effect of initial grain size on the recrystallization behavior of a type 304 austenitic stainless steel during and following hot deformation was investigated using hot torsion. The refinement of the initial grain size to 8 μm, compared with an initial grain size of 35 μm, had considerable effects on the dynamic recrystallization (DRX) and post-DRX phenomena. For both DRX and post-DRX, microstructural investigations using electron backscattered diffraction confirmed an interesting transition from conventional (discontinuous) to continuous DRX with a decrease in the initial grain size. Also, there were unexpected effects of initial grain size on DRX and post-DRX grain sizes.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Plastic yielding in magnesium alloys frequently involves the initiation of both slip and twinning events. A proper understanding of the phenomenon at the grain level requires knowledge of how these two mechanisms progress and interact over both time and space and what the local resolved stresses are. To date, simultaneous collection of such information has not been achievable. To address this shortfall, we have developed a modified Laue based in situ micro X-ray diffraction technique with an unprecedented combination of time and spatial resolution. A ten-fold reduction in data collection times is realized by the refinement of rapid polychromatic Laue "single-shot" mapping. From single Laue patterns, we extract grain depth information, detect onset of yielding and achieve 2 × 10-4 lattice strain resolution. The technique is employed to examine yielding and twinning in a magnesium grain embedded ∼200 μm below the sample surface. We examine 13 time steps and reveal the following behaviour: initial onset of basal slip, subsequent onset of twinning, development of further accommodation slip and evolution of twin shape and size; along with the corresponding values of local resolved shear stresses. © 2014 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.