936 resultados para Global Commodity Chain
Resumo:
Ligand-induced conformational changes in proteins are of immense functional relevance. It is a major challenge to elucidate the network of amino acids that are responsible for the percolation of ligand-induced conformational changes to distal regions in the protein from a global perspective. Functionally important subtle conformational changes (at the level of side-chain noncovalent interactions) upon ligand binding or as a result of environmental variations are also elusive in conventional studies such as those using root-mean-square deviations (r.m.s.d.s). In this article, the network representation of protein structures and their analyses provides an efficient tool to capture these variations (both drastic and subtle) in atomistic detail in a global milieu. A generalized graph theoretical metric, using network parameters such as cliques and/or communities, is used to determine similarities or differences between structures in a rigorous manner. The ligand-induced global rewiring in the protein structures is also quantified in terms of network parameters. Thus, a judicious use of graph theory in the context of protein structures can provide meaningful insights into global structural reorganizations upon perturbation and can also be helpful for rigorous structural comparison. Data sets for the present study include high-resolution crystal structures of serine proteases from the S1A family and are probed to quantify the ligand-induced subtle structural variations.
Resumo:
The problem addressed in this paper is concerned with an important issue faced by any green aware global company to keep its emissions within a prescribed cap. The specific problem is to allocate carbon reductions to its different divisions and supply chain partners in achieving a required target of reductions in its carbon reduction program. The problem becomes a challenging one since the divisions and supply chain partners, being autonomous, may exhibit strategic behavior. We use a standard mechanism design approach to solve this problem. While designing a mechanism for the emission reduction allocation problem, the key properties that need to be satisfied are dominant strategy incentive compatibility (DSIC) (also called strategy-proofness), strict budget balance (SBB), and allocative efficiency (AE). Mechanism design theory has shown that it is not possible to achieve the above three properties simultaneously. In the literature, a mechanism that satisfies DSIC and AE has recently been proposed in this context, keeping the budget imbalance minimal. Motivated by the observation that SBB is an important requirement, in this paper, we propose a mechanism that satisfies DSIC and SBB with slight compromise in allocative efficiency. Our experimentation with a stylized case study shows that the proposed mechanism performs satisfactorily and provides an attractive alternative mechanism for carbon footprint reduction by global companies.
Resumo:
4 p.
Resumo:
4 p.
Resumo:
In the past, agricultural researchers tended to ignore the fisheries factor in global food and nutritional security. However, the role of fish is becoming critical as a result of changes in fisheries regimes, income distribution, demand and increasing international trade. Fish has become the fastest growing food commodity in international trade and this is raising concern for the supply of fish for poorer people. As a result, the impact of international trade regimes on fish supply and demand, and the consequences on the availability of fish for developing countries need to be studied. Policies aimed at increasing export earnings are in conflict with those aimed at increasing food security in third world countries. Fisheries policy research will need to focus on three primary areas which have an impact on the marginal and poorer communities of developing countries: increased international demand for low-value fish on the supply of poorer countries; improved aquaculture technologies and productivity on poorer and marginal farmers; and land and water allocation policy on productivity, food security and sustainability across farm, fishery and related sectors. The key to local food security is in the integration of agriculture, aquaculture and natural resources but an important focus on fisheries policy research will be to look at the linkages between societal, economic and natural systems in order to develop adequate and flexible solutions to achieve sustainable use of aquatic resources systems.
Resumo:
As manufacturing enterprises become increasingly globalised, the supply chain is becoming more fragmented, with multiple players engaged in key aspects of the value chain. This has seen the emergence of suppliers offering specialised operations (research, design, production, service) which are capable of serving widely dispersed markets. It is generally assumed that managing these increasingly complex international supply chains requires sophisticated management techniques. Many companies have installed advanced planning systems for just this reason - systems that require skilled staff to implement the complex processes involved.
Resumo:
Our society is addicted to steel. Global demand for steel has risen to 1.4 billion tonnes a year and is set to at least double by 2050, while the steel industry generates nearly a 10th of the world's energy related CO₂ emissions. Meeting our 2050 climate change targets would require a 75% reduction in CO₂ emissions for every tonne of steel produced and finding credible solutions is proving a challenge. The starting point for understanding the environmental impacts of steel production is to accurately map the global steel supply chain and identify the biggest steel flows where actions can be directed to deliver the largest impact. In this paper we present a map of global steel, which for the first time traces steel flows from steelmaking, through casting, forming, and rolling, to the fabrication of final goods. The diagram reveals the relative scale of steel flows and shows where efforts to improve energy and material efficiency should be focused.
Resumo:
This paper presents an analysis of the slow-peaking phenomenon, a pitfall of low-gain designs that imposes basic limitations to large regions of attraction in nonlinear control systems. The phenomenon is best understood on a chain of integrators perturbed by a vector field up(x, u) that satisfies p(x, 0) = 0. Because small controls (or low-gain designs) are sufficient to stabilize the unperturbed chain of integrators, it may seem that smaller controls, which attenuate the perturbation up(x, u) in a large compact set, can be employed to achieve larger regions of attraction. This intuition is false, however, and peaking may cause a loss of global controllability unless severe growth restrictions are imposed on p(x, u). These growth restrictions are expressed as a higher order condition with respect to a particular weighted dilation related to the peaking exponents of the nominal system. When this higher order condition is satisfied, an explicit control law is derived that achieves global asymptotic stability of x = 0. This stabilization result is extended to more general cascade nonlinear systems in which the perturbation p(x, v) v, v = (ξ, u) T, contains the state ξ and the control u of a stabilizable subsystem ξ = a(ξ, u). As an illustration, a control law is derived that achieves global stabilization of the frictionless ball-and-beam model.
Resumo:
To investigate the interaction between the tropical Pacific and China seas a variable-grid global ocean circulation model with fine grid[(1/6)degrees] covering the area from 20degreesS to 50degreesN and from 99degrees to 150degreesE is developed. Numerical computation of the annually cyclic circulation fields is performed. The results of the annual mean zonal currents and deep to abyssal western boundary currents in the equatorial Pacific Ocean are reported. The North Equatorial Current,the North Equatorial Countercurrent, the South Equatorial Current and the Equatorial Undercurrent are fairly well simulated. The model well reproduces the northward flowing abyssal western boundary current. From the model results a lower deep western boundary current east of the Bismarck-Solomon-New Hebrides Island chain at depths around 2 000 in has been found. The model results also show that the currents in the equatorial Pacific Ocean have multi-layer structures both in zonal currents and western boundary currents, indicating that the global ocean overturning thermohaline circulation appears of multi-layer pattern.
Resumo:
Many factors such as poverty, ineffective institutions and environmental regulations may prevent developing countries from managing how natural resources are extracted to meet a strong market demand. Extraction for some resources has reached such proportions that evidence is measurable from space. We present recent evidence of the global demand for a single commodity and the ecosystem destruction resulting from commodity extraction, recorded by satellites for one of the most biodiverse areas of the world. We find that since 2003, recent mining deforestation in Madre de Dios, Peru is increasing nonlinearly alongside a constant annual rate of increase in international gold price (∼18%/yr). We detect that the new pattern of mining deforestation (1915 ha/year, 2006-2009) is outpacing that of nearby settlement deforestation. We show that gold price is linked with exponential increases in Peruvian national mercury imports over time (R(2) = 0.93, p = 0.04, 2003-2009). Given the past rates of increase we predict that mercury imports may more than double for 2011 (∼500 t/year). Virtually all of Peru's mercury imports are used in artisanal gold mining. Much of the mining increase is unregulated/artisanal in nature, lacking environmental impact analysis or miner education. As a result, large quantities of mercury are being released into the atmosphere, sediments and waterways. Other developing countries endowed with gold deposits are likely experiencing similar environmental destruction in response to recent record high gold prices. The increasing availability of satellite imagery ought to evoke further studies linking economic variables with land use and cover changes on the ground.
Resumo:
Modeling of global climate change is moving from global circulation model (GCM)-type projections with coupled biogeochemical models to projections of ecological responses, including food web and upper trophic levels. Marine and coastal ecosystems are highly susceptible to the impacts of global climate change and also produce significant ecosystem services. The effects of global climate change on coastal and marine ecosystems involve a much wider array of effects than the usual temperature, sea level rise, and precipitation. This paper is an overview for a collection of 12 papers that examined various aspects of global climate change on marine ecosystems and comprise this special issue. We summarized the major features of the models and analyses in the papers to determine general patterns. A wide range of ecosystems were simulated using a diverse set of modeling approaches. Models were either 3-dimensional or used a few spatial boxes, and responses to global climate change were mostly expressed as changes from a baseline condition. Three issues were identified from the across-model comparison: (a) lack of standardization of climate change scenarios, (b) the prevalence of site-specific and even unique models for upper trophic levels, and (c) emphasis on hypothesis evaluation versus forecasting. We discuss why these issues are important as global climate change assessment continues to progress up the food chain, and, when possible, offer some initial steps for going forward.
Resumo:
A generic, hierarchical, and multifidelity unit cost of acquisition estimating methodology for outside production machined parts is presented. The originality of the work lies with the method’s inherent capability of being able to generate multilevel and multifidelity cost relations for large volumes of parts utilizing process, supply chain costing data, and varying degrees of part design definition information. Estimates can be generated throughout the life cycle of a part using different grades of the combined information available. Considering design development for a given part, additional design definition may be used as it becomes available within the developed method to improve the quality of the resulting estimate. Via a process of analogous classification, parts are classified into groups of increasing similarity using design-based descriptors. A parametric estimating method is then applied to each subgroup of the machined part commodity in the direction of improved classification and using which, a relationship which links design variables to manufacturing cycle time may be generated. A rate cost reflective of the supply chain is then applied to the cycle time estimate for a given part to arrive at an estimate of make cost which is then totalled with the material and treatments cost components respectively to give an overall estimate of unit acquisition cost. Both the rate charge applied and the treatments cost calculated for a given procured part is derived via the use of ratio analysis.
Resumo:
Se propone un planteamiento teórico/conceptual para determinar si las relaciones interorganizativas e interpersonales de la netchain de las cooperativas agroalimentarias evolucionan hacia una learning netchain. Las propuestas del trabajo muestran que el mayor grado de asociacionismo y la mayor cooperación/colaboración vertical a lo largo de la cadena están positivamente relacionados con la posición horizontal de la empresa focal más cercana del consumidor final. Esto requiere una planificación y una resolución de problemas de manera conjunta, lo que está positivamente relacionado con el mayor flujo y diversidad de la información/conocimiento obtenido y diseminado a lo largo de la netchain. Al mismo tiempo se necesita desarrollar un contexto social en el que fluya la información/conocimiento y las nuevas ideas de manera informal y esto se logra con redes personales y, principalmente, profesionales y con redes internas y, principalmente, externas. Todo esto permitirá una mayor satisfacción de los socios de la cooperativa agroalimentaria y de sus distribuidores y una mayor intensidad en I+D, convirtiéndose la netchain de la cooperativa agroalimentaria, así, en una learning netchain.