994 resultados para Gingival Fibroblasts
Resumo:
Proteasome inhibitors, used in cancer treatment for their proapoptotic effects, have anti-inflammatory and antifibrotic effects on animal models of various inflammatory and fibrotic diseases. Their effects in cells from patients affected by either inflammatory or fibrotic diseases have been poorly investigated. Nasal polyposis is a chronic inflammatory disease of the sinus mucosa characterized by tissue inflammation and remodeling. We tested the hypothesis that proteasome inhibition of nasal polyp fibroblasts might reduce their proliferation and inflammatory and fibrotic response. Accordingly, we investigated the effect of the proteasome inhibitor Z-Leu-Leu-Leu-B(OH)2 (MG262) on cell viability and proliferation and on the production of collagen and inflammatory cytokines in nasal polyp and nasal mucosa fibroblasts obtained from surgery specimens. MG262 reduced the viability of nasal mucosa and polyp fibroblasts concentration- and time-dependently, with marked effects after 48 h of treatment. The proteasome inhibitor bortezomib provoked a similar effect. MG262-induced cell death involved loss of mitochondrial membrane potential, caspase-3 and poly(ADP-ribose) polymerase activation, induction of c-Jun phosphorylation, and mitogen-activated protein kinase phosphatase-1 expression. Low concentrations of MG262 provoked growth arrest, inhibited DNA replication and retinoblastoma phosphorylation, and increased expression of the cell cycle inhibitors p21 and p27. MG262 concentration-dependently inhibited basal and transforming growth factor-β-induced collagen mRNA expression and interleukin (IL)-1β-induced production of IL-6, IL-8, monocyte chemoattractant protein-1, regulated on activation normal T cell expressed and secreted, and granulocyte/macrophage colony-stimulating factor in both fibroblast types. MG262 inhibited IL-1β/tumor necrosis factor-α-induced activation of nuclear factor-κB. We conclude that noncytotoxic treatment with MG262 reduces the proliferative, fibrotic, and inflammatory response of nasal fibroblasts, whereas high MG262 concentrations induce apoptosis.
Resumo:
Matrix metalloproteinase-13 (MMP-13) is a potent proteolytic enzyme, whose expression has been previously associated with fetal bone development and postnatal bone remodeling and with adult gingival wound healing. MMP-13 is also known to be involved in the growth and invasion of various cancers including squamous cell carcinoma (SCC) of the skin. The aim of this study was to further elucidate the function and regulation of MMP-13 in wound repair and cancer. In this study, it was shown that fetal skin fibroblasts express MMP-13 in response to transforming growth factor-β in a p38 MAP kinase dependent manner. In addition, MMP-13 was found to be expressed in vivo by wound fibroblasts in human fetal skin grafted on SCID mice. Adenovirally delivered expression of MMP-13 enhanced collagen matrix contraction by fibroblasts in vitro in association with altered cytoskeletal structure, enhanced proliferation and survival. These results indicate that MMP-13 is involved in cell-mediated collagen matrix remodeling and suggest a role for MMP-13 in superior matrix remodeling and scarless healing of fetal skin wounds. Using an MMP-13 deficient mouse strain, it was shown that MMP-13 is essential for the normal development of experimental granulation tissue in mice. MMP-13 was implicated in the regulation of myofibroblast function and angiogenesis and the expression of genes involved in cellular proliferation and movement, immune response, angiogenesis and proteolysis. Finally, epidermal mitogen, keratinocyte growth factor (KGF) was shown to suppress the malignant properties of skin SCC cells by downregulating the expression of several target genes with potential cancer promoting properties, including MMP-13, and by reducing SCC cell invasion. These results provide evidence that MMP-13 potently regulates cell viability, myofibroblast function and angiogenesis associated with wound healing and cancer. In addition, fibroblasts expressing MMP-13 show high collagen reorganization capacity. Moreover, the results suggest that KGF mediates the anti-cancer effects on skin SCC
Resumo:
A Brazilian female infant presented delayed psychomotor development, skin pigmentary dysplasia and some dysmorphic features. Chromosome analysis from peripheral blood culture was normal, but the karyotype from skin fibroblasts revealed mosaicism for trisomy 13. This case demonstrates the relevance of performing chromosomal analysis of skin fibroblasts in patients with mental retardation, associated with pigmentary dysplasia of the skin and a normal karyotype in peripheral blood lymphocytes. To our knowledge, it is the first report of trisomy 13 demonstrated only in skin fibroblasts.
Resumo:
Ultrastructural phenotypic transitional features were noted between adult adipocytes and fibroblasts in the subcutaneous adipose tissue of the dorsal pad of normal adult Wistar rats of both sexes, weighing 180-260 g, after acute injury either by the implantation of small (1.8 x 1 x 0.4 cm) perforated plastic boxes or by local heat application. Soon after the inflicted damage, fat-containing cells presented variable shapes. Early after damage, some of these cells were round, adipocyte-like, with numerous and large cytoplasmic fat droplets. A few days later, fat-containing cells became elongated, with the fat droplets in their cytoplasm becoming smaller and less numerous. The cells also showed a prominent active rough endoplasmic reticulum and newly formed collagenous matrix accumulated in the interstices. Although current views consider adult adipocytes to be terminal cells, the present findings, in their time sequence, strongly suggest the transformation of adipocytes into fibroblasts after acute injury to adipose tissue.
Resumo:
Niemann-Pick type C (NPC) fibroblasts present a large concentration of cholesterol in their cytoplasm due to a still unidentified deficiency in cholesterol metabolism. The influence of dimethylsulfoxide (DMSO) on the amount of intracellular cholesterol was measured in 8 cultures of normal fibroblasts and in 7 fibroblast cultures from NPC patients. DMSO was added to the fibroblast cultures at three different concentrations (1, 2 and 4%, v/v) and the cultures were incubated for 24 h. Sphingomyelinase activity was significantly increased in both groups of cells only when incubated with 2% DMSO (59.4 ± 9.1 and 77.0 ± 9.1 nmol h-1 mg protein-1, controls without and with 2% DMSO, respectively; 47.7 ± 5.2 and 55.8 ± 4.1 nmol h-1 mg protein-1, NPC without and with 2% DMSO, respectively). However, none of the DMSO concentrations used altered the amount of cholesterol in the cytoplasm of NPC cells (0.704 ± 0.049, 0.659 ± 0.041, 0.688 ± 0.063 and 0.733 ± 0.088 mg/mg protein, without DMSO, 1% DMSO, 2% DMSO and 4% DMSO, respectively). This finding suggests that sphingomyelinase deficiency is a secondary defect in NPC and shows that DMSO failed to remove the stored cholesterol. These data do not support the use of DMSO in the treatment of NPC patients.
Resumo:
In a previous study we demonstrated that the incidence of fibroblast colony-forming units (CFU-F) was very low in bone marrow primary cultures from the majority of untreated advanced non-small lung cancer patients (LCP) compared to normal controls (NC). For this reason, we studied the ability of bone marrow stromal cells to achieve confluence in primary cultures and their proliferative capacity following four continuous subcultures in consecutive untreated LCP and NC. We also evaluated the production of interleukin-1ß (IL-1ß) and prostaglandin E2 (PGE2) by pure fibroblasts. Bone marrow was obtained from 20 LCP and 20 NC. A CFU-F assay was used to investigate the proliferative and confluence capacity. Levels of IL-1ß and PGE2 in conditioned medium (CM) of pure fibroblast cultures were measured with an ELISA kit and RIA kit, respectively. Only fibroblasts from 6/13 (46%) LCP confluent primary cultures had the capacity to proliferate following four subcultures (NC = 100%). Levels of spontaneously released IL-1ß were below 10 pg/ml in the CM of LCP, while NC had a mean value of 1,217 ± 74 pg/ml. In contrast, levels of PGE2 in these CM of LCP were higher (77.5 ± 23.6 pg/ml) compared to NC (18.5 ± 0.9 pg/ml). In conclusion, bone marrow fibroblasts from LCP presented a defective proliferative and confluence capacity, and this deficiency may be associated with the alteration of IL-1ß and PGE2 production.
Resumo:
Invasive bacteria can induce their own uptake and specify their intracellular localization; hence it is commonly assumed that proximate modulation of host cell transcription is not required for infection. However, bacteria can also modulate, directly or indirectly, the transcription of many host cell genes, whose role in the infection may be difficult to determine by global gene expression. Is the host cell nucleus proximately required for intracellular infection and, if so, for which pathogens and at what stages of infection? Enucleated cells were previously infected with Toxoplasma gondii, Chlamydia psittaci, C. trachomatis, or Rickettsia prowazekii. We enucleated L929 mouse fibroblasts by centrifugation in the presence of cytochalasin B, and compared the infection with Shigella flexneri M90T 5a of nucleated and enucleated cells. Percent infection and bacterial loads were estimated with a gentamicin suppression assay in cultures fixed and stained at different times after infection. Enucleation reduced by about half the percent of infected cells, a finding that may reflect the reduced endocytic ability of L929 cytoplasts. However, average numbers of bacteria and frequency distributions of bacterial numbers per cell at different times were similar in enucleated and nucleated cells. Bacteria with actin-rich tails were detected in both cytoplasts and nucleated cells. Lastly, cytoplasts were similarly infected 2 and 24 h after enucleation, suggesting that short-lived mRNAs were not involved in the infection. Productive S. flexneri infection could thus take place in cells unable to modulate gene transcription, RNA processing, or nucleus-dependent signaling cascades.
Resumo:
GM1 gangliosidosis is an autosomal recessive disorder caused by the deficiency of lysosomal acid hydrolase ß-galactosidase (ß-Gal). It is one of the most frequent lysosomal storage disorders in Brazil, with an estimated frequency of 1:17,000. The enzyme is secreted and can be captured by deficient cells and targeted to the lysosomes. There is no effective treatment for GM1 gangliosidosis. To determine the efficiency of an expression vector for correcting the genetic defect of GM1 gangliosidosis, we tested transfer of the ß-Gal gene (Glb1) to fibroblasts in culture using liposomes. ß-Gal cDNA was cloned into the expression vectors pSCTOP and pREP9. Transfection was performed using 4 µL lipofectamine 2000 and 1.5-2.0 µg DNA. Cells (2 x 10(5)/well) were harvested 24 h, 48 h, and 7 days after transfection. Enzyme specific activity was measured in cell lysate and supernatant by fluorometric assay. Twenty-four hours after transfection, treated cells showed a higher enzyme specific activity (pREP9-ß-Gal: 621.5 ± 323.0, pSCTOP-ß-Gal: 714.5 ± 349.5, pREP9-ß-Gal + pSCTOP-ß-Gal: 1859.0 ± 182.4, and pREP9-ß-Gal + pTRACER: 979.5 ± 254.9 nmol·h-1·mg-1 protein) compared to untreated cells (18.0 ± 3.1 for cell and 32.2 ± 22.2 nmol·h-1·mg-1 protein for supernatant). However, cells maintained in culture for 7 days showed values similar to those of untreated patients. In the present study, we were able to transfect primary patients' skin fibroblasts in culture using a non-viral vector which overexpresses the ß-Gal gene for 24 h. This is the first attempt to correct fibroblasts from patients with GM1 gangliosidosis by gene therapy using a non-viral vector.
Resumo:
Basic fibroblast growth factor (bFGF) regulates skin wound healing; however, the underlying mechanism remains to be defined. In the present study, we determined the effects of bFGF on the regulation of cell growth as well as collagen and fibronectin expression in fibroblasts from normal human skin and from hypertrophic scars. We then explored the involvement of mitochondria in mediating bFGF-inducedeffects on the fibroblasts. We isolated and cultivated normal and hypertrophic scar fibroblasts from tissue biopsies of patients who underwent plastic surgery for repairing hypertrophic scars. The fibroblasts were then treated with different concentrations of bFGF (ranging from 0.1 to 1000 ng/mL). The growth of hypertrophic scar fibroblasts became slower with selective inhibition of type I collagen production after exposure to bFGF. However, type III collagen expression was affected in both normal and hypertrophic scar fibroblasts. Moreover, fibronectin expression in the normal fibroblasts was up-regulated after bFGF treatment. bFGF (1000 ng/mL) also induced mitochondrial depolarization in hypertrophic scar fibroblasts (P < 0.01). The cellular ATP level decreased in hypertrophic scar fibroblasts (P < 0.05), while it increased in the normal fibroblasts following treatment with bFGF (P < 0.01). These data suggest that bFGF has differential effects and mechanisms on fibroblasts of the normal skin and hypertrophic scars, indicating that bFGF may play a role in the early phase of skin wound healing and post-burn scar formation.
Resumo:
Diabetics have an increased prevalence of periodontitis, and diabetes is one of the causative factors of severe periodontitis. Apoptosis is thought to be involved in this pathogenic relationship. The aim of this study was to investigate apoptosis in human periodontal ligament (PDL) fibroblasts induced by advanced glycation end products (AGEs) and their receptor (RAGE). We examined the roles of apoptosis, AGEs, and RAGE during periodontitis in diabetes mellitus using cultured PDL fibroblasts that were treated by AGE-modified bovine serum albumin (AGE-BSA), bovine serum albumin (BSA) alone, or given no treatment (control). Microscopy and real-time quantitative PCR indicated that PDL fibroblasts treated with AGE-BSA were deformed and expressed higher levels of RAGE and caspase 3. Cell viability assays and flow cytometry indicated that AGE-BSA reduced cell viability (69.80±5.50%, P<0.01) and increased apoptosis (11.31±1.73%, P<0.05). Hoechst 33258 staining and terminal-deoxynucleotidyl transferase-mediated nick-end labeling revealed that AGE-BSA significantly increased apoptosis of PDL fibroblasts. The results showed that the changes in PDL fibroblasts induced by AGE-BSA may explain how AGE-RAGE participates in and exacerbates periodontium destruction.
Resumo:
The effects of interleukin-10 (IL-10) and glucose on mRNA and protein expression of osteoprotegerin (OPG), and its ligand, receptor activator of nuclear factor-κB ligand (RANKL), were investigated in human periodontal ligament fibroblasts (HPDLFs). Primary HPDLFs were treated with different concentrations of IL-10 (0, 1, 10, 25, 50, and 100 ng/mL) or glucose (0, 5.5, 10, 20, 30, and 40 mmol/L). Changes in mRNA and protein expression were examined using the reverse-transcription polymerase chain reaction (RT-PCR) and Western blot analysis, respectively. After IL-10 treatment, mRNA and protein levels of OPG were increased, while mRNA and protein levels of RANKL were decreased (P<0.05), both in a concentration-dependent manner. Glucose stimulation had the opposite concentration-dependent effect to that of IL-10 on OPG and RANKL expression. IL-10 upregulated OPG expression and downregulated RANKL expression, whereas high glucose upregulated RANKL and downregulated OPG in HDPLFs. Abnormal levels of IL-10 and glucose may contribute to the pathogenesis of periodontal disease.
Resumo:
Introduction: Continuous exposition of the peritoneal membrane to conventional dialysis solutions is an important risk factor for inducing structural and functional alterations. Objective: To compare in vitro mouse fibroblast NIH-3T3 cell viability after exposition to a neutral pH dialysis solution in comparison to cells exposed to a standard solution. Methods: Experimental study to compare the effects of a conventional standard or a neutral-pH, low-glucose degradation products peritoneal dialysis solution on the viability of exposed fibroblasts in cell culture. Both solutions were tested in all the commercially available glucose concentrations. Cell viability was evaluated with tetrazolium salt colorimetric assay. Results: Fibroblast viability was significantly superior in the neutral pH solution in comparison to control, in all three glucose concentrations (Optical density in nm-means ± SD: 1.5% 0.295 ± 0.047 vs. 0.372 ± 0.042, p < 0.001; 2.3% 0.270 ± 0.036 vs. 0.337 ± 0.051, p < 0.001; 4.25% 0.284 ± 0.037 vs. 0.332 ± 0.032, p < 0.001; control vs. neutral pH respectively, Student t Test). There was no significant difference in cell viability between the three concentrations of glucose when standard solution was used (ANOVA p = 0.218), although cell viability was higher after exposition to neutral pH peritoneal dialysis fluid at 1.5% in comparison to 2.3 and 4.25% glucose concentrations (ANOVA p = 0.008: Bonferroni 1.5% vs. 2.3% p = 0.033, 1.5% vs. 4.25% p = 0.014, 2.3% vs. 4.25% p = 1.00). Conclusion: Cell viability was better in neutral pH dialysis solution, especially in the lower glucose concentration. A more physiological pH and lower glucose degradation products may be responsible for such results.
Resumo:
Objective: The adventitia has been recognized to play important roles in vascular oxidative stress, remodelling and contraction. We recently demonstrated that adventitial fibroblasts are able to express endothelin-1 (ET-1) in response to angiotensin II (ANG II). However, the mechanisms by which ANG II induces ET-1 expression are unknown. It is also unclear whether the ET-1 receptors are expressed in the adventitia. We therefore examined the role of oxidative stress in the regulation of ET-1. We also investigated the expression of both the ETA and ETB receptors and the roles of these two types of receptors in collagen synthesis and ET-1 clearance in adventitial fibroblasts. Methods and Results: Adventitial fibroblasts were isolated and cultured from the thoracic mouse aorta. Cells were treated with ANG II (lOOnM), ET-1 (lOpM), NADPH oxidase inhibitor apocynin (lOOfiM), the superoxide anion scavenger tempol (lOOfiM), the ANG II receptor antagonists (100[aM), losartan (AT| receptor) and PD 1233 19 (AT2 receptor), the ET-1 receptor antagonists (lOOuM), BQ123 (ETA receptor) and BQ788 (ETB receptor), and the ETB receptor agonist (lOOnM) Sarafotoxin 6C. ET-1 peptide levels were determined by ELISA, while ETA ,ETB and collagen levels were determined by Western blot. ANG II increased ET-1 peptide levels in a time-dependent manner reaching significance when incubated for 24 hours. NAD(P)H oxidase inhibitor, apocynin, as well as the superoxide scanverger, tempol, significantly reduced ANG Il-induced ET-1 peptide levels while over-expression of SOD1 (endogenous antioxidant enzyme) significantly decreased ANG Il-induced collagen I expression, therefore implicating reactive oxygen species in the mediation of ET-1. ANG II increased ETA receptor protein as well as collagen in a similar fashion, reaching significance after 4, 6, and 24 hours treatment. ANG II induced collagen was reduced while in the presence of the ETA receptor antagonist suggesting the role of the ETa receptor in the regulation of the extracellular matrix. ANG II treatment also increased ETB receptor protein levels in a time-dependent manner. ANG II treatment in the presence of the ETB receptor antagonist significantly increased ET-1 peptide levels. On another hand, the ETB receptor agonist, Sarafotoxin 6C, significantly decreased ET-1 peptide levels. These data implicate the role of the ETb receptor in the clearance of the ET-1 peptide. Conclusion: ANG II-induced increases of ET-1 peptide appears to be mediated by reactive oxygen species derived from NAD(P)H oxidase. Both the ETA and ETB receptors are expressed in adventitial fibroblasts. The ETA receptor subtype mediates collagen I expression, while the ETB receptor may play a protective role through increasing the clearance of the ET- 1 peptide.
Resumo:
With the relationship between endothelin-1 (ET-1) stimulation and reactive oxygen species (ROS) production unknown in adventitial fibroblasts, I examined the ROS response to ET-1 and angiotensin (Ang II). ET-1 -induced ROS peaked following 4 hrs of ET-1 stimulation and was inhibited by an ETA receptor antagonist (BQ 123, 1 uM) an extracellular signal-regulated kinase (ERK) 1/2 inhibitor (PD98059, 10 uM), and by both a specific, apocynin (10 uM), and non-specific, diphenyleneiodonium (10 uM), NAD(P)H oxidase inhibitor. NOX2 knockout fibroblasts did not produce an ET-1 induced change in ROS levels. Ang II treatment increased ROS levels in a biphasic manner, with the second peak occurring 6 hrs following stimulation. The secondary phase of Ang II induced ROS was inhibited by an ATi receptor antagonist, Losartan (100 uM) and BQ 123. In conclusion, ET-1 induces ROS production primarily through an ETA-ERKl/2 NOX2 pathway, additionally, Ang II-induced ROS production also involves an ETa pathway.
Resumo:
The allometric scaling relationship observed between metabolic rate (MR) and species body mass can be partially explained by differences in cellular MR (Porter & Brand, 1995). Here, I studied cultured cell lines derived from ten mammalian species to determine whether cells propagated in an identical environment exhibited MR scaling. Oxidative and anaerobic metabolic parameters did not scale significantly with donor body mass in cultured cells, indicating the absence of an intrinsic MR setpoint. The rate of oxygen delivery has been proposed to limit cellular metabolic rates in larger organisms (West et al., 2002). As such cells were cultured under a variety of physiologically relevant oxygen tensions to investigate the effect of oxygen on cellular metabolic rates. Exposure to higher medium oxygen tensions resulted in increased metabolic rates in all cells. Higher MRs have the potential to produce more reactive oxygen species (ROS) which could cause genomic instability and thus reduced lifespan. Longer-lived species are more resistant to oxidative stress (Kapahi et al, 1999), which may be due to greater antioxidant and/or DNA repair capacities. This hypothesis was addressed by culturing primary dermal fibroblasts from eight mammalian species ranging in maximum lifespan from 5 to 120 years. Only the antioxidant manganese superoxide dismutases (MnSOD) positively scaled with species lifespan (p<0.01). Oxidative damage to DNA is primarily repaired by the base excision repair (BER) pathway. BER enzyme activities showed either no correlation or as in the case of polymerase p correlated, negatively with donor species (p<0.01 ). Typically, mammalian cells are cultured in a 20% O2 (atmospheric) environment, which is several-fold higher than cells experience in vivo. Therefore, the secondary aim of this study was to determine the effect of culturing mammalian cells at a more physiological oxygen tension (3%) on BER, and antioxidant, enzyme activities. Consistently, standard culture conditions induce higher antioxidant and DNA ba.se excision repair activities than are present under a more physiological oxygen concentration. Therefore, standard culture conditions are inappropriate for studies of oxidative stress-induced activities and species differences in fibroblast DNA BER repair capacities may represent differences in ability to respond to oxidative stress. An interesting outcome firom this study was that some inherent cellular properties are maintained in culture (i.e. stress responses) while others are not (i.e. MR).