996 resultados para Germplasm resources, Plant


Relevância:

30.00% 30.00%

Publicador:

Resumo:

Marine genetic resources other than fish and mammals are of increasing commercial interest and importance in genetic engineering, but fail being properly addressed in the law of the sea and in international economic law. The paper analyses the implication of the United Nations Convention on the Law of the Sea, the Convention on Biodiversity, the WTO Agreement on Trade Related Aspects of Intellectual Property Rights and related instruments under the auspices of WIPO. The paper argues that the triangle of these agreements does not adequately address marine genetic resources in particular in the high seas. Neither concerns of protecting biodiversity nor of access and benefit sharing find appropriate answers commensurate to the commercial potential of marine genetic resources. The paper suggests developing an instrument inspired by, and comparable to, the mechanisms developed by the International Treaty on Plant Genetic Resources for Food and Agriculture. The instrument would grant facilitated access to marine genetic resources and offer a more detailed set of rules with respect to the sharing of benefits resulting from their use, thereby addressing the existing legal gaps in a comprehensive way.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Complementarity that leads to more efficient resource use is presumed to be a key mechanism explaining positive biodiversity–productivity relationships but has been described solely for experimental set-ups with controlled environmental settings or for very short gradients of abiotic conditions, land-use intensity and biodiversity. Therefore, we analysed plant diversity effects on nitrogen dynamics across a broad range of Central European grasslands. The 15N natural abundance in soil and plant biomass reflects the net effect of processes affecting ecosystem N dynamics. This includes the mechanism of complementary resource utilization that causes a decrease in the 15N isotopic signal. We measured plant species richness, natural abundance of 15N in soil and plants, above-ground biomass of the community and three single species (an herb, grass and legume) and a variety of additional environmental variables in 150 grassland plots in three regions of Germany. To explore the drivers of the nitrogen dynamics, we performed several analyses of covariance treating the 15N isotopic signals as a function of plant diversity and a large set of covariates. Increasing plant diversity was consistently linked to decreased δ15N isotopic signals in soil, above-ground community biomass and the three single species. Even after accounting for multiple covariates, plant diversity remained the strongest predictor of δ15N isotopic signals suggesting that higher plant diversity leads to a more closed nitrogen cycle due to more efficient nitrogen use. Factors linked to increased δ15N values included the amount of nitrogen taken up, soil moisture and land-use intensity (particularly fertilization), all indicators of the openness of the nitrogen cycle due to enhanced N-turnover and subsequent losses. Study region was significantly related to the δ15N isotopic signals indicating that regional peculiarities such as former intensive land use could strongly affect nitrogen dynamics. Synthesis. Our results provide strong evidence that the mechanism of complementary resource utilization operates in real-world grasslands where multiple external factors affect nitrogen dynamics. Although single species may differ in effect size, actively increasing total plant diversity in grasslands could be an option to more effectively use nitrogen resources and to reduce the negative environmental impacts of nitrogen losses.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We present quantitative reconstructions of regional vegetation cover in north-western Europe, western Europe north of the Alps, and eastern Europe for five time windows in the Holocene around 6k, 3k, 0.5k, 0.2k, and 0.05k calendar years before present (bp)] at a 1 degrees x1 degrees spatial scale with the objective of producing vegetation descriptions suitable for climate modelling. The REVEALS model was applied on 636 pollen records from lakes and bogs to reconstruct the past cover of 25 plant taxa grouped into 10 plant-functional types and three land-cover types evergreen trees, summer-green (deciduous) trees, and open land]. The model corrects for some of the biases in pollen percentages by using pollen productivity estimates and fall speeds of pollen, and by applying simple but robust models of pollen dispersal and deposition. The emerging patterns of tree migration and deforestation between 6k bp and modern time in the REVEALS estimates agree with our general understanding of the vegetation history of Europe based on pollen percentages. However, the degree of anthropogenic deforestation (i.e. cover of cultivated and grazing land) at 3k, 0.5k, and 0.2k bp is significantly higher than deduced from pollen percentages. This is also the case at 6k in some parts of Europe, in particular Britain and Ireland. Furthermore, the relationship between summer-green and evergreen trees, and between individual tree taxa, differs significantly when expressed as pollen percentages or as REVEALS estimates of tree cover. For instance, when Pinus is dominant over Picea as pollen percentages, Picea is dominant over Pinus as REVEALS estimates. These differences play a major role in the reconstruction of European landscapes and for the study of land cover-climate interactions, biodiversity and human resources.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Tef Eragrostis tef (Zucc.) Trotter is a cereal crop resilient to adverse climatic and soil conditions, and possessing desirable storage properties. Although tef provides high quality food and grows under marginal conditions unsuitable for other cereals, it is considered to be an orphan crop because it has benefited little from genetic improvement. Hence, unlike other cereals such as maize and wheat, the productivity of tef is extremely low. In spite of the low productivity, tef is widely cultivated by over six million small-scale farmers in Ethiopia where it is annually grown on more than three million hectares of land, accounting for over 30% of the total cereal acreage. Tef, a tetraploid with 40 chromosomes (2n=4x=40), belongs to the Family Poaceae and, together with finger millet (Eleusine coracana Gaertn), to the Subfamily Chloridoideae. It was believed to have originated in Ethiopia. There are about 350 Eragrostis species of which E. tef is the only species cultivated for human consumption. At the present time, the gene bank in Ethiopia holds over five thousand tef accessions collected from geographical regions diverse in terms of climate and elevation. These germplasm accessions appear to have huge variability with regard to key agronomic and nutritional traits. In order to properly utilize the variability in developing new tef cultivars, various techniques have been implemented to catalog the extent and unravel the patterns of genetic diversity. In this review, we show some recent initiatives investigating the diversity of tef using genomics, transcriptomics and proteomics and discuss the prospect of these efforts in providing molecular resources that can aid modern tef breeding.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Patterns of size inequality in crowded plant populations are often taken to be indicative of the degree of size asymmetry of competition, but recent research suggests that some of the patterns attributed to size‐asymmetric competition could be due to spatial structure. To investigate the theoretical relationships between plant density, spatial pattern, and competitive size asymmetry in determining size variation in crowded plant populations, we developed a spatially explicit, individual‐based plant competition model based on overlapping zones of influence. The zone of influence of each plant is modeled as a circle, growing in two dimensions, and is allometrically related to plant biomass. The area of the circle represents resources potentially available to the plant, and plants compete for resources in areas in which they overlap. The size asymmetry of competition is reflected in the rules for dividing up the overlapping areas. Theoretical plant populations were grown in random and in perfectly uniform spatial patterns at four densities under size‐asymmetric and size‐symmetric competition. Both spatial pattern and size asymmetry contributed to size variation, but their relative importance varied greatly over density and over time. Early in stand development, spatial pattern was more important than the symmetry of competition in determining the degree of size variation within the population, but after plants grew and competition intensified, the size asymmetry of competition became a much more important source of size variation. Size variability was slightly higher at higher densities when competition was symmetric and plants were distributed nonuniformly in space. In a uniform spatial pattern, size variation increased with density only when competition was size asymmetric. Our results suggest that when competition is size asymmetric and intense, it will be more important in generating size variation than is local variation in density. Our results and the available data are consistent with the hypothesis that high levels of size inequality commonly observed within crowded plant populations are largely due to size‐asymmetric competition, not to variation in local density.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The flower market is characterized by being both eager for novelties and highly competitive. The exploration of native species with ornamental potential represents a remarkable area of research, since it entails the introduction and development of novel promising ornamental crops. The genus Glandularia, widely distributed in Argentina, holds an enormous ornamental potential, due to the variety of colors of its inflorescences (red, violet, white, rose and lily), and extended flowering period. There is little information on tissue culture of Glandularia, thus highlighting the relevance of this research. In this work, the conditions for in vitro multiplication of G. peruviana were optimized. It was concluded that WPM supplemented with TDZ, in concentrations ranging from 1.1 to 9.0 μM, was the most adequate treatment, rendering a multiplication rate of approximately 10 de novo shoots per explant. This paper presents a protocol for the in vitro propagation of this species and introduces interesting prospects in the application of biotechnological tools to breed Glandularia.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Theory and observation indicate that changes in the rate of primary production can alter the balance between the bottom-up influences of plants and resources and the top-down regulation of herbivores and predators on ecosystem structure and function. The Exploitation Ecosystem Hypothesis (EEH) posited that as aboveground net primary productivity (ANPP) increases, the additional biomass should support higher trophic levels. We developed an extension of EEH to include the impacts of increases in ANPP on belowground consumers in a similar manner as aboveground, but indirectly through changes in the allocation of photosynthate to roots. We tested our predictions for plants aboveground and for phytophagous nematodes and their predators belowground in two common arctic tundra plant communities subjected to 11 years of increased soil nutrient availability and/or exclusion of mammalian herbivores. The less productive dry heath (DH) community met the predictions of EEH aboveground, with the greatest ANPP and plant biomass in the fertilized plots protected from herbivory. A palatable grass increased in fertilized plots while dwarf evergreen shrubs and lichens declined. Belowground, phytophagous nematodes also responded as predicted, achieving greater biomass in the higher ANPP plots, whereas predator biomass tended to be lower in those same plots (although not significantly). In the higher productivity moist acidic tussock (MAT) community, aboveground responses were quite different. Herbivores stimulated ANPP and biomass in both ambient and enriched soil nutrient plots; maximum ANPP occurred in fertilized plots exposed to herbivory. Fertilized plots became dominated by dwarf birch (a deciduous shrub) and cloudberry (a perennial forb); under ambient conditions these two species coexist with sedges, evergreen dwarf shrubs, and Sphagnum mosses. Phytophagous nematodes did not respond significantly to changes in ANPP, although predator biomass was greatest in control plots. The contrasting results of these two arctic tundra plant communities suggest that the predictions of EEH may hold for very low ANPP communities, but that other factors, including competition and shifts in vegetation composition toward less palatable species, may confound predicted responses to changes in productivity in higher ANPP communities such as the MAT studied here.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We studied the relationship between flower size and nectar properties of hummingbird-visited flowers in the Brazilian Atlantic Forest. We analysed the nectar volume and concentration as a function of corolla length and the average bill size of visitors for 150 plant species, using the phylogenetic generalized least squares (PGLS) to control for phylogenetic signals in the data. We found that nectar volume is positively correlated with corolla length due to phylogenetic allometry. We also demonstrated that larger flowers provide better rewards for long-billed hummingbirds. Regardless of the causal mechanisms, our results support the hypothesis that morphological floral traits that drive partitioning among hummingbirds correspond to the quantity of resources produced by the flowers in the Atlantic Forest. We demonstrate that the relationship between nectar properties and flower size is affected by phylogenetic constraints and thus future studies assessing the interaction between floral traits need to control for phylogenetic signals in the data.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The annual grass Brachypodium distachyon has been recently recognized as the model plant for functional genomics of temperate grasses, including cereals of economic relevance like wheat and barley. Sixty-two lines of B. distachyon were assessed for response to drought stress and heat tolerance. All these lines, except the reference genotype BD21, derive from specimens collected in 32 distinct locations of the Iberian Peninsula, covering a wide range of geo- climatic conditions. Sixteen lines of Brachypodium hybridum, an allotetraploid closely related to B. distachyon were used as reference of abiotic-stress well-adapted genotypes. Drought tolerance was assessed in a green-house trial. At the rosette-stage, no irrigation was applied to treated plants whereas their replicates at the control were maintained well watered during all the experiment. Thermographic images of treated and control plants were taken after 2 and 3 weeks of drought treatment, when stressed plants showed medium and extreme wilting symptoms. The mean leaf temperature of stressed (LTs) and control (LTc) plants was estimated based upon thermographic records from selected pixels (183 per image) that strictly correspond to leaf tissue. The response to drought was based on the analysis of two parameters: LTs and the thermal difference (TD) between stressed and control plants (LTs – LTc). The response to heat stress was based on LTc. Comparison of the mean values of these parameters showed that: 1) Genotypes better adapted to drought (B. hybridum lines) presented a higher LTs and TD than B. distachyon lines. 2) Under high temperature conditions, watered plants of B. hybridum lines maintained lower LTc than those of B. distachyon. Those results suggest that in these species adaptation to drought is linked to a more efficient stomata regulation: under water stress stomata are closed, increasing foliar temperature but also water use efficiency by reducing transpiration. With high temperature and water availability the results are less definite, but still seems that opening stomata allow plants to increase transpiration and therefore to diminish foliar temperature.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Pumped storage hydro plants (PSHP) can provide adequate energy storage and frequency regulation capacities in isolated power systems having significant renewable energy resources. Due to its high wind and solar potential, several plans have been developed for La Palma Island in the Canary archipelago, aimed at increasing the penetration of these energy sources. In this paper, the performance of the frequency control of La Palma power system is assessed, when the demand is supplied by the available wind and solar generation with the support of a PSHP which has been predesigned for this purpose. The frequency regulation is provided exclusively by the PSHP. Due to topographic and environmental constraints, this plant has a long tail-race tunnel without a surge tank. In this configuration, the effects of pressure waves cannot be neglected and, therefore, usual recommendations for PID governor tuning provide poor performance. A PI governor tuning criterion is proposed for the hydro plant and compared with other criteria according to several performance indices. Several scenarios considering solar and wind energy penetration have been simulated to check the plant response using the proposed criterion. This tuning of the PI governor maintains La Palma system frequency within grid code requirements.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

El sistema de energía eólica-diesel híbrido tiene un gran potencial en la prestación de suministro de energía a comunidades remotas. En comparación con los sistemas tradicionales de diesel, las plantas de energía híbridas ofrecen grandes ventajas tales como el suministro de capacidad de energía extra para "microgrids", reducción de los contaminantes y emisiones de gases de efecto invernadero, y la cobertura del riesgo de aumento inesperado del precio del combustible. El principal objetivo de la presente tesis es proporcionar nuevos conocimientos para la evaluación y optimización de los sistemas de energía híbrido eólico-diesel considerando las incertidumbres. Dado que la energía eólica es una variable estocástica, ésta no puede ser controlada ni predecirse con exactitud. La naturaleza incierta del viento como fuente de energía produce serios problemas tanto para la operación como para la evaluación del valor del sistema de energía eólica-diesel híbrido. Por un lado, la regulación de la potencia inyectada desde las turbinas de viento es una difícil tarea cuando opera el sistema híbrido. Por otro lado, el bene.cio económico de un sistema eólico-diesel híbrido se logra directamente a través de la energía entregada a la red de alimentación de la energía eólica. Consecuentemente, la incertidumbre de los recursos eólicos incrementa la dificultad de estimar los beneficios globales en la etapa de planificación. La principal preocupación del modelo tradicional determinista es no tener en cuenta la incertidumbre futura a la hora de tomar la decisión de operación. Con lo cual, no se prevé las acciones operativas flexibles en respuesta a los escenarios futuros. El análisis del rendimiento y simulación por ordenador en el Proyecto Eólico San Cristóbal demuestra que la incertidumbre sobre la energía eólica, las estrategias de control, almacenamiento de energía, y la curva de potencia de aerogeneradores tienen un impacto significativo sobre el rendimiento del sistema. En la presente tesis, se analiza la relación entre la teoría de valoración de opciones y el proceso de toma de decisiones. La opción real se desarrolla con un modelo y se presenta a través de ejemplos prácticos para evaluar el valor de los sistemas de energía eólica-diesel híbridos. Los resultados muestran que las opciones operacionales pueden aportar un valor adicional para el sistema de energía híbrida, cuando esta flexibilidad operativa se utiliza correctamente. Este marco se puede aplicar en la optimización de la operación a corto plazo teniendo en cuenta la naturaleza dependiente de la trayectoria de la política óptima de despacho, dadas las plausibles futuras realizaciones de la producción de energía eólica. En comparación con los métodos de valoración y optimización existentes, el resultado del caso de estudio numérico muestra que la política de operación resultante del modelo de optimización propuesto presenta una notable actuación en la reducción del con- sumo total de combustible del sistema eólico-diesel. Con el .n de tomar decisiones óptimas, los operadores de plantas de energía y los gestores de éstas no deben centrarse sólo en el resultado directo de cada acción operativa, tampoco deberían tomar decisiones deterministas. La forma correcta es gestionar dinámicamente el sistema de energía teniendo en cuenta el valor futuro condicionado en cada opción frente a la incertidumbre. ABSTRACT Hybrid wind-diesel power systems have a great potential in providing energy supply to remote communities. Compared with the traditional diesel systems, hybrid power plants are providing many advantages such as providing extra energy capacity to the micro-grid, reducing pollution and greenhouse-gas emissions, and hedging the risk of unexpected fuel price increases. This dissertation aims at providing novel insights for assessing and optimizing hybrid wind-diesel power systems considering the related uncertainties. Since wind power can neither be controlled nor accurately predicted, the energy harvested from a wind turbine may be considered a stochastic variable. This uncertain nature of wind energy source results in serious problems for both the operation and value assessment of the hybrid wind-diesel power system. On the one hand, regulating the uncertain power injected from wind turbines is a difficult task when operating the hybrid system. On the other hand, the economic profit of a hybrid wind-diesel system is achieved directly through the energy delivered to the power grid from the wind energy. Therefore, the uncertainty of wind resources has increased the difficulty in estimating the total benefits in the planning stage. The main concern of the traditional deterministic model is that it does not consider the future uncertainty when making the dispatch decision. Thus, it does not provide flexible operational actions in response to the uncertain future scenarios. Performance analysis and computer simulation on the San Cristobal Wind Project demonstrate that the wind power uncertainty, control strategies, energy storage, and the wind turbine power curve have a significant impact on the performance of the system. In this dissertation, the relationship between option pricing theory and decision making process is discussed. A real option model is developed and presented through practical examples for assessing the value of hybrid wind-diesel power systems. Results show that operational options can provide additional value to the hybrid power system when this operational flexibility is correctly utilized. This framework can be applied in optimizing short term dispatch decisions considering the path-dependent nature of the optimal dispatch policy, given the plausible future realizations of the wind power production. Comparing with the existing valuation and optimization methods, result from numerical example shows that the dispatch policy resulting from the proposed optimization model exhibits a remarkable performance in minimizing the total fuel consumption of the wind-diesel system. In order to make optimal decisions, power plant operators and managers should not just focus on the direct outcome of each operational action; neither should they make deterministic decisions. The correct way is to dynamically manage the power system by taking into consideration the conditional future value in each option in response to the uncertainty.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Comparative genomics offers unparalleled opportunities to integrate historically distinct disciplines, to link disparate biological kingdoms, and to bridge basic and applied science. Cross-species, cross-genera, and cross-kingdom comparisons are proving key to understanding how genes are structured, how gene structure relates to gene function, and how changes in DNA have given rise to the biological diversity on the planet. The application of genomics to the study of crop species offers special opportunities for innovative approaches for combining sequence information with the vast reservoirs of historical information associated with crops and their evolution. The grasses provide a particularly well developed system for the development of tools to facilitate comparative genetic interpretation among members of a diverse and evolutionarily successful family. Rice provides advantages for genomic sequencing because of its small genome and its diploid nature, whereas each of the other grasses provides complementary genetic information that will help extract meaning from the sequence data. Because of the importance of the cereals to the human food chain, developments in this area can lead directly to opportunities for improving the health and productivity of our food systems and for promoting the sustainable use of natural resources.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Urban parks have long been valued for the environmental, social, and economic benefits they provide. Increasingly, parks are also being recognized as features important for sustainable city design. This Capstone Project will identify, compare, analyze, and discuss means for designing sustainable urban parks. Recommendations for designing sustainable urban parks, based on project results, include: 1) ensure park features will support high levels of human activity; 2) use gravel to construct park trails; 3) purchase playground structures made of recycled materials; 4) plant a high number of perennials in flowerbeds and other vegetated areas; 5) plant climate-appropriate plants in vegetated areas; 6) ensure parks have high levels of plant diversity; and 7) develop future studies further exploring sustainable park design.