978 resultados para Geology, Stratigraphic -- Ordovician
Resumo:
The intensive postwar search for new petroleum horizons has resulted in widespread prospecting in the northern Great Plains. No commercial production has as yet been derived from Ordovician or Devonian rocks in Montana, but the relatively few tests that have penetrated to critical depths have disclosed encouraging conditions which merit further consideration, especially in Devonian strata.
Resumo:
Formation pathways of ancient siliceous iron formations and related Fe isotopic fractionation are still not completely understood. Investigating these processes, however, is difficult as good modern analogues to ancient iron formations are scarce. Modern siliceous Fe oxyhydroxide deposits are found at marine hydrothermal vent sites, where they precipitate from diffuse, low temperature fluids along faults and fissures on the seafloor. These deposits exhibit textural and chemical features that are similar to some Phanerozoic iron formations, raising the question as to whether the latter could have precipitated from diffuse hydrothermal fluids rather than from hydrothermal plumes. In this study, we present the first data on modern Fe oxyhydroxide deposits from the Jan Mayen hydrothermal vent fields, Norwegian-Greenland Sea. The samples we investigated exhibited very low δ56Fe values between -2.09‰ and -0.66‰. Due to various degrees of partial oxidation, the Fe oxyhydroxides are with one exception either indistinguishable from low-temperature hydrothermal fluids from which they precipitated (-1.84‰ and -1.53‰ in δ56Fe) or are enriched in the heavy Fe isotopes. In addition, we investigated Fe isotope variations in Ordovician jasper beds from the Løkken ophiolite complex, Norway, which have been interpreted to represent diagenetic products of siliceous ferrihydrite precursors that precipitated in a hydrothermal plume, in order to compare different formation pathways of Fe oxyhydroxide deposits. Iron isotopes in the jasper samples have higher δ56Fe values (-0.38‰ to +0.89‰) relative to modern, high-temperature hydrothermal vent fluids (ca. -0.40‰ on average), supporting the fallout model. However, formation of the Ordovician jaspers by diffuse venting cannot be excluded, due to lithological differences of the subsurface of the two investigated vent systems. Our study shows that reliable interpretation of Fe isotope variations in modern and ancient marine Fe oxyhydroxide deposits depends on comprehensive knowledge of the geological context. Furthermore, we demonstrate that very negative δ56Fe values in such samples might not be the result of microbial dissimilatory iron reduction, but could be caused instead by inorganic reactions.
Resumo:
Upper Jurassic (Kimmeridgian)±Upper Cretaceous (Cenomanian) inner platform carbonates in the Western Taurides are composed of metre-scale upward-shallowing cyclic deposits (parasequences) and important karstic surfaces capping some of the cycles. Peritidal cycles (shallow subtidal facies capped by tidal-¯at laminites or fenestrate limestones) are regressive- and transgressive-prone (upward-deepening followed by upward-shallowing facies trends). Subtidal cycles are of two types and indicate incomplete shallowing. Submerged subtidal cycles are composed of deeper subtidal facies overlain by shallow subtidal facies. Exposed subtidal cycles consist of deeper subtidal facies overlain by shallow subtidal facies that are capped by features indicative of prolonged subaerial exposure. Subtidal facies occur characteristically in the Jurassic, while peritidal cycles are typical for the Lower Cretaceous of the region. Within the foraminiferal and dasyclad algal biostratigraphic framework, four karst breccia levels are recognized as the boundaries of major second-order cycles, introduced for the ®rst time in this study. These levels correspond to the Kimmeridgian±Portlandian boundary, mid-Early Valanginian, mid-Early Aptian and mid-Cenomanian and represent important sea level falls which affected the distribution of foraminiferal fauna and dasyclad ¯ora of the Taurus carbonate platform. Within the Kimmeridgian±Cenomanian interval 26 third-order sequences (types 1 and 2) are recognized. These sequences are the records of eustatic sea level ¯uctuations rather than the records of local tectonic events because the boundaries of the sequences representing 1±4 Ma intervals are correlative with global sea level falls. Third-order sequences and metre-scale cyclic deposits are the major units used for long-distance, high-resolution sequence stratigraphic correlation in the Western Taurides. Metre-scale cyclic deposits (parasequences) in the Cretaceous show genetical stacking patterns within third-order sequences and correspond to fourth-order sequences representing 100±200 ka. These cycles are possibly the E2 signal (126 ka) of the orbital eccentricity cycles of the Milankovitch band. The slight deviation of values, calculated for parasequences, from the mean value of eccentricity cycles can be explained by the currently imprecise geochronology established in the Cretaceous and missed sea level oscillations when the platform lay above fluctuating sea level.
Resumo:
Consideration of the geosphere for isolation of nuclear waste has generated substantial interest in the origin, age, and movement of fl uids and gases in low-permeability rock formations. Here, we present profi les of isotopes, solutes, and helium in porewaters recovered from 860 m of Cambrian to Devonian strata on the eastern fl ank of the Michigan Basin. Of particular interest is a 240-m-thick, halite-mineralized, Ordovician shale and carbonate aquiclude, which hosts Br–-enriched, post-dolomitic brine (5.8 molal Cl) originating as evaporated Silurian seawater. Authigenic helium that has been accumulating in the aquiclude for more than 260 m.y. is found to be isolated from underlying allochthonous, 3He-enriched helium that originated from the rifted base of the Michigan Basin and the Canadian Shield. The Paleozoic age and immobility of the pore fl uids in this Ordovician aquiclude considerably strengthen the safety case for deep geological repositories, but also provide new insights into the origin of deep crustal brines and opportunities for research on other components of a preserved Paleozoic porewater system.
Resumo:
A quantitative analysis was carried out of planktonic diatoms (biogenic opal) and calcareous nannofossils (biogenic calcite) in late Quaternary sediments (MIS 1-6) from four cores along a N-S transect east of New Zealand from 39°50'S to 50°04'S across the E-W-trending submarine ridge, the Chatham Rise. This was done to trace movements of oceanic fronts and to improve calcareous nannofossil stratigraphy for the last 130 000 yr in the SW Pacific. Sites ODP 1123 and Q 858 are below present day subtropical surface waters north of Chatham Rise. Site DSDP 594 is below present-day mixed temperate-subantarctic surface water south of the rise, and site ODP 1120 is below subantarctic surface water. The more diverse and opportunistic planktonic diatoms provided marker species for subtropical surface waters (Alveus marina, Fragilariopsis doliolus, Rhizosolenia bergonii and Azpeitia nodulifer) and others for subantarctic surface waters (Nitzschia kerguelensis, Thalassiosira lentiginosa). Application of these tracers permits the following conclusions: (1) subtropical conditions persisted north of Chatham Rise throughout the past 130 000 yr, in spite of the cooling of surface waters during colder periods; (2) during warm times (MIS 5 and MIS 3, and in MIS 1), the sporadic occurrence of subtropical species south of Chatham Rise indicates occasional admixture of subtropical surface waters that far south; (3) subantarctic waters extended to the southern slopes of the Chatham Rise during MIS 5b, late MIS 5a to early MIS 4, during the warmer time intervals in early MIS 3, and during latest MIS 3 to early MIS 2; (4) subantarctic frontal conditions existed over southern Chatham Rise during early MIS 4 and late MIS 3 to early MIS 2; and (5) it is probable that during cooler times, MIS 6, MIS 5b, and in MIS 2, intensified particle transport from the Bounty Trough to the northern flank of Chatham Rise occurred by intensified boundary currents. The larger abundance fluctuations in both microfossil groups at the sites south of Chatham Rise than north of Chatham Rise reflect northward shifts of the Circumpolar Subantarctic Water (CSW) and a contemporaneous disappearance of Australasian Subantarctic Water (ASW), implying an elevated temperature gradient between the surface water masses north and south of the Chatham Rise at the times of such northward shifts of CSW. Calcareous nannofossils are less diverse than diatoms, and are less specialised. Some calcareous nannofossil species show abundance shifts at the same time at different latitudes. Two of these abundance shifts can be used for correlation between subtropical and subantarctic sediments in the SW Pacific: (1) reversal in the relative abundance of Calcidiscus leptoporus and Coccolithus pelagicus associated with the MIS 2/1 boundary; and (2) drop in abundance of Gephyrocapsa muellerae or medium-sized Gephyrocapsa at the MIS 4/3 boundary. An additional abundance shift seems to be restricted to subtropical to mixed temperate-subtropical-subantarctic surface waters: (3) increase in abundance of G. muellerae or medium-sized Gephyrocapsa at the beginning of MIS 2 below the Okareka tephra.
Resumo:
A 2 m.y. oxygen isotope record of Globigerinoides sacculifer from the Ontong Java Plateau, based on cores from Ocean Drilling Program Leg 130, is dated by matching variations to an orbital template. The procedure allows us to present the most complete Quaternary record available for the western equatorial Pacific. The template-generating algorithm describes a balance between growth and melting of ice. Following basic Milankovitch theory, ice growth is taken as constant, while melting is taken to depend on summer insolation, current ice mass, and average past ice mass. Template settings must be changed once, between 1 and 1.2 Ma, to reflect a major shift in climate. Template fits are strikingly good over much of the record and can be used to detect and fill gaps from core breaks and other disturbances. One result of template dating is an exact age for the Brunhes-Matuyama magnetic reversal boundary, at 790+/-5 ka, as well as several other precise dates (900 ka for the middle Pleistocene climate shift; 1070, 1240, and 1450 ka for isotope stages 31, 37, and 47, respectively). Sedimentation rates fluctuate between 18 and 28 m/m.y., a ca. 400 ka cycle being the most prominent. Major anomalies arise within the transitional regime (1.2 to 1 Ma). The origin of the cycles is unknown; we propose productivity variations in the western equatorial Pacific.