998 resultados para Genes, Synthetic


Relevância:

20.00% 20.00%

Publicador:

Resumo:

One of the most important parts of any Bridge Management System (BMS) is the condition assessment and rating of bridges. This paper, introduces a procedure for condition assessment, based on criticality and vulnerability analysis. According to this procedure, new rating equations are developed. The inventory data is used to determine the contribution of different critical factors such as environmental effects, flood, earthquake, wind, and vehicle impacts. The criticality of the components to live load and vulnerability of the components to the above critical factors are identified. Based on the criticality and the vulnerability of the components and criticality of factors, and by using the new rating equations, the condition assessment and the rating of the railway bridges and their components at the network level will be conducted. This method for the first time incorporates structural analysis, available knowledge of risk assessment in structural engineering standards, and the experience of structural engineers in a practical way to enhance the reliability of the condition assessment and rating a network of bridges.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Phloridzin is the predominant polyphenol in apple (Malus× domestica Borkh.) where it accumulates to high concentrations in many tissues including the leaves, bark, roots and fruit. Despite its relative abundance in apple the biosynthesis of phloridzin and other related dihydrochalcones remains only partially understood. The key unidentified enzyme in phloridzin biosynthesis is a putative carbon double bond reductase which is thought to act on p-coumaroyl-CoA to produce the dihydro p-coumaroyl-CoA precursor. A functional screen of six apple enoyl reductase-like (ENRL) genes was carried out using transient infiltration into tobacco and gene silencing by RNA interference (RNAi) in order to determine carbon double bond reductase activity and contribution to foliar phloridzin concentrations. The ENRL-3 gene caused a significant increase in phloridzin concentration when infiltrated into tobacco leaves whilst a second protein ENRL-5, with over 98% amino acid sequence similarity to ENRL-3, showed p-coumaroyl-CoA reductase activity in enzyme assays. Finally, an RNAi study showed that reducing the transcript levels of ENRL-3 in transgenic 'Royal Gala' led to a 66% decrease in the concentration of dihydrochalcones in the leaves in the one available silenced line. Overall these results suggest that ENRL-3, and its close homolog ENRL-5, may contribute to the biosynthesis of phloridzin in apple.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Biotechnology and nanotechnology both intersect with other technologies in ways that open new possibilities for further technological progress. The potential for increased convergence between technological fields highlights the need for regulatory frameworks to be integrated, flexible and responsive. Within a federal legal system such as Australia’s, there is a need to ensure that we adopt a coordinated national approach to the crafting of regulatory solutions. In addition, there is a need for global cooperation in the development of international standards and regulatory harmonisation. Finally, this article considers the role that law plays in negotiating risk in relation to new technologies.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Background Flower development in kiwifruit (Actinidia spp.) is initiated in the first growing season, when undifferentiated primordia are established in latent shoot buds. These primordia can differentiate into flowers in the second growing season, after the winter dormancy period and upon accumulation of adequate winter chilling. Kiwifruit is an important horticultural crop, yet little is known about the molecular regulation of flower development. Results To study kiwifruit flower development, nine MADS-box genes were identified and functionally characterized. Protein sequence alignment, phenotypes obtained upon overexpression in Arabidopsis and expression patterns suggest that the identified genes are required for floral meristem and floral organ specification. Their role during budbreak and flower development was studied. A spontaneous kiwifruit mutant was utilized to correlate the extended expression domains of these flowering genes with abnormal floral development. Conclusions This study provides a description of flower development in kiwifruit at the molecular level. It has identified markers for flower development, and candidates for manipulation of kiwifruit growth, phase change and time of flowering. The expression in normal and aberrant flowers provided a model for kiwifruit flower development.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We have compared physical and genetic maps of the region around the legJ gene in pea. In this vicinity there are four B-type legumin genes, arranged as two close pairs. The detection of a recombination event within this gene cluster allows the orientation of this group of genes within the surrounding linkage group to be determined. The relationship between physical and genetic distances in this region is discussed, as are the implications of this for relating physical and genetic maps elsewhere in the pea genome.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Background Transcription factors (TFs) co-ordinately regulate target genes that are dispersed throughout the genome. This co-ordinate regulation is achieved, in part, through the interaction of transcription factors with conserved cis-regulatory motifs that are in close proximity to the target genes. While much is known about the families of transcription factors that regulate gene expression in plants, there are few well characterised cis-regulatory motifs. In Arabidopsis, over-expression of the MYB transcription factor PAP1 (PRODUCTION OF ANTHOCYANIN PIGMENT 1) leads to transgenic plants with elevated anthocyanin levels due to the co-ordinated up-regulation of genes in the anthocyanin biosynthetic pathway. In addition to the anthocyanin biosynthetic genes, there are a number of un-associated genes that also change in expression level. This may be a direct or indirect consequence of the over-expression of PAP1. Results Oligo array analysis of PAP1 over-expression Arabidopsis plants identified genes co-ordinately up-regulated in response to the elevated expression of this transcription factor. Transient assays on the promoter regions of 33 of these up-regulated genes identified eight promoter fragments that were transactivated by PAP1. Bioinformatic analysis on these promoters revealed a common cis-regulatory motif that we showed is required for PAP1 dependent transactivation. Conclusion Co-ordinated gene regulation by individual transcription factors is a complex collection of both direct and indirect effects. Transient transactivation assays provide a rapid method to identify direct target genes from indirect target genes. Bioinformatic analysis of the promoters of these direct target genes is able to locate motifs that are common to this sub-set of promoters, which is impossible to identify with the larger set of direct and indirect target genes. While this type of analysis does not prove a direct interaction between protein and DNA, it does provide a tool to characterise cis-regulatory sequences that are necessary for transcription activation in a complex list of co-ordinately regulated genes.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Restriction fragment length polymorphisms have been used to determine the chromosomal location of the genes encoding the glycine decarboxylase complex (GDC) and serine hydroxymethyltransferase (SHMT) of pea leaf mitochondria. The genes encoding the H subunit of GDC and the genes encoding SHMT both show linkage to the classical group I marker i. In addition, the genes for the P protein of GDC show linkage to the classic group I marker a. The genes for the L and T proteins of GDC are linked to one another and are probably situated on the satellite of chromosome 7. The mRNAs encoding the five polypeptides that make up GDC and SHMT are strongly induced when dark-grown etiolated pea seedlings are placed in the light. Similarly, when mature plants are placed in the dark for 48 h, the levels of both GDC protein and SHMT mRNAs decline dramatically and then are induced strongly when these plants are returned to the light. During both treatments a similar pattern of mRNA induction is observed, with the mRNA encoding the P protein of GDC being the most rapidly induced and the mRNA for the H protein the slowest. Whereas during the greening of etiolated seedlings the polypeptides of GDC and SHMT show patterns of accumulation similar to those of the corresponding mRNAs, very little change in the level of the polypeptides is seen when mature plants are placed in the dark and then re-exposed to the light.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

MADS-box genes similar to Arabidopsis SHORT VEGETATIVE PHASE (SVP) have been implicated in the regulation of flowering in annual species and bud dormancy in perennial species. Kiwifruit (Actinidia spp.) are woody perennial vines where bud dormancy and out-growth affect flower development. To determine the role of SVP-like genes in dormancy and flowering of kiwifruit, four MADS-box genes with homology to Arabidopsis SVP, designated SVP1, SVP2, SVP3, and SVP4, have been identified and analysed in kiwifruit and functionally characterized in Arabidopsis. Phylogenetic analysis indicate that these genes fall into different sub-clades within the SVP-like gene group, suggesting distinct functions. Expression was generally confined to vegetative tissues, and increased transcript accumulation in shoot buds over the winter period suggests a role for these genes in bud dormancy. Down-regulation before flower differentiation indicate possible roles as floral repressors. Over-expression and complementation studies in Arabidopsis resulted in a range of floral reversion phenotypes arising from interactions with Arabidopsis MADS-box proteins, but only SVP1 and SVP3 were able to complement the svp mutant. These results suggest that the kiwifruit SVP-like genes may have distinct roles during bud dormancy and flowering.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Elevated circulating interleukin-6 (IL6) and up-regulated S100P in prostate cancer (PCa) specimens correlate independently with progression to androgen-independent and metastatic PCa. The cause of up-regulated S100P levels in advanced PCa remains to be determined. We investigated the possibility that IL6 is an inducer of S100P. Determination of mRNA and protein levels by real-time PCR and Western blotting revealed that IL6 is a more potent inducer of S100P than the synthetic androgen, R1881, in the LNCaP/C4-2B model of PCa progression. IL6 did not require androgen to induce S100P in these cells, which express a functional androgen receptor (AR). Like R1881, IL6 was unable to induce S100P in PC3 cells that lack a functional AR. IL6 did not strongly induce the AR-dependent genes PSA and KLK2 and, contrary to R1881, down-regulated Cyr61/CCN1, a potential marker that is down-regulated in PCa. Epidermal growth factor (EGF), which like IL6 is a non-androgen activator of the AR, did not induce S100P. The data identifies a unique gene-induction profile for IL6 and suggests that IL6 may require a functional AR for S100P induction. A link between elevated IL6 and up-regulated S100P in androgen-refractory and metastatic PCa is postulated.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Cardiovascular disease (CVD) affects millions of people worldwide and is influenced by numerous factors, including lifestyle and genetics. Expression quantitative trait loci (eQTLs) influence gene expression and are good candidates for CVD risk. Founder-effect pedigrees can provide additional power to map genes associated with disease risk. Therefore, we identified eQTLs in the genetic isolate of Norfolk Island (NI) and tested for associations between these and CVD risk factors. We measured genome-wide transcript levels of blood lymphocytes in 330 individuals and used pedigree-based heritability analysis to identify heritable transcripts. eQTLs were identified by genome-wide association testing of these transcripts. Testing for association between CVD risk factors (i.e., blood lipids, blood pressure, and body fat indices) and eQTLs revealed 1,712 heritable transcripts (p < 0.05) with heritability values ranging from 0.18 to 0.84. From these, we identified 200 cis-acting and 70 trans-acting eQTLs (p < 1.84 × 10(-7)) An eQTL-centric analysis of CVD risk traits revealed multiple associations, including 12 previously associated with CVD-related traits. Trait versus eQTL regression modeling identified four CVD risk candidates (NAAA, PAPSS1, NME1, and PRDX1), all of which have known biological roles in disease. In addition, we implicated several genes previously associated with CVD risk traits, including MTHFR and FN3KRP. We have successfully identified a panel of eQTLs in the NI pedigree and used this to implicate several genes in CVD risk. Future studies are required for further assessing the functional importance of these eQTLs and whether the findings here also relate to outbred populations.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

DNA methylation at promoter CpG islands (CGI) is an epigenetic modification associated with inappropriate gene silencing in multiple tumor types. In the absence of a human pituitary tumor cell line, small interfering RNA-mediated knockdown of the maintenance methyltransferase DNA methyltransferase (cytosine 5)-1 (Dnmt1) was used in the murine pituitary adenoma cell line AtT-20. Sustained knockdown induced reexpression of the fully methylated and normally imprinted gene neuronatin (Nnat) in a time-dependent manner. Combined bisulfite restriction analysis (COBRA) revealed that reexpression of Nnat was associated with partial CGI demethylation, which was also observed at the H19 differentially methylated region. Subsequent genome-wide microarray analysis identified 91 genes that were significantly differentially expressed in Dnmt1 knockdown cells (10% false discovery rate). The analysis showed that genes associated with the induction of apoptosis, signal transduction, and developmental processes were significantly overrepresented in this list (P < 0.05). Following validation by reverse transcription-PCR and detection of inappropriate CGI methylation by COBRA, four genes (ICAM1, NNAT, RUNX1, and S100A10) were analyzed in primary human pituitary tumors, each displaying significantly reduced mRNA levels relative to normal pituitary (P < 0.05). For two of these genes, NNAT and S100A10, decreased expression was associated with increased promoter CGI methylation. Induced expression of Nnat in stable transfected AtT-20 cells inhibited cell proliferation. To our knowledge, this is the first report of array-based "epigenetic unmasking" in combination with Dnmt1 knockdown and reveals the potential of this strategy toward identifying genes silenced by epigenetic mechanisms across species boundaries.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The project evaluated potential of soluble cellulose as a cheap feed ingredient for major farmed Australian freshwater crayfish species testing their growth performance, digestive enzyme activity and digestive enzyme gene expression patterns. Test animals showed an innate capacity to utilise a range of carbohydrate sources including complex structural polysaccharides. Results suggest that more plant-derived ingredient can be incorporated in formulated low-cost feeds for the culture industry.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Purpose Small field x-ray beam dosimetry is difficult due to a lack of lateral electronic equilibrium, source occlusion, high dose gradients and detector volume averaging. Currently there is no single definitive detector recommended for small field dosimetry. The objective of this work was to evaluate the performance of a new commercial synthetic diamond detector, namely the PTW 60019 microDiamond, for the dosimetry of small x-ray fields as used in stereotactic radiosurgery (SRS). Methods Small field sizes were defined by BrainLAB circular cones (4 – 30 mm diameter) on a Novalis Trilogy linear accelerator and using the 6 MV SRS x-ray beam mode for all measurements. Percentage depth doses were measured and compared to an IBA SFD and a PTW 60012 E diode. Cross profiles were measured and compared to an IBA SFD diode. Field factors, Ω_(Q_clin,Q_msr)^(f_clin,f_msr ), were calculated by Monte Carlo methods using BEAMnrc and correction factors, k_(Q_clin,Q_msr)^(f_clin,f_msr ), were derived for the PTW 60019 microDiamond detector. Results For the small fields of 4 to 30 mm diameter, there were dose differences in the PDDs of up to 1.5% when compared to an IBA SFD and PTW 60012 E diode detector. For the cross profile measurements the penumbra values varied, depending upon the orientation of the detector. The field factors, Ω_(Q_clin,Q_msr)^(f_clin,f_msr ), were calculated for these field diameters at a depth of 1.4 cm in water and they were within 2.7% of published values for a similar linear accelerator. The corrections factors, k_(Q_clin,Q_msr)^(f_clin,f_msr ), were derived for the PTW 60019 microDiamond detector. Conclusions We conclude that the new PTW 60019 microDiamond detector is generally suitable for relative dosimetry in small 6 MV SRS beams for a Novalis Trilogy linear equipped with circular cones.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We show that imatinib, nilotinib, and dasatinib possess weak off-target activity against RAF and, therefore, drive paradoxical activation of BRAF and CRAF in a RAS-dependent manner. Critically, because RAS is activated by BCR-ABL, in drug-resistant chronic myeloid leukemia (CML) cells, RAS activity persists in the presence of these drugs, driving paradoxical activation of BRAF, CRAF, MEK, and ERK, and leading to an unexpected dependency on the pathway. Consequently, nilotinib synergizes with MEK inhibitors to kill drug-resistant CML cells and block tumor growth in mice. Thus, we show that imatinib, nilotinib, and dasatinib drive paradoxical RAF/MEK/ERK pathway activation and have uncovered a synthetic lethal interaction that can be used to kill drug-resistant CML cells in vitro and in vivo.