937 resultados para Generalized Disjunctive Programming
Resumo:
A theory and generalized synthesis procedure is advocated for the design of weir notches and orifice-notches having a base in any given shape, to a depth a, such that the discharge through it is proportional to any singular monotonically-increasing function of the depth of flow measured above a certain datum. The problem is reduced to finding an exact solution of a Volterra integral equation in Abel form. The maximization of the depth of the datum below the crest of the notch is investigated. Proof is given that for a weir notch made out of one continuous curve, and for a flow proportional to the mth power of the head, it is impossible to bring the datum lower than (2m − 1)a below the crest of the notch. A new concept of an orifice-notch, having discontinuity in the curve and a division of flow into two distinct portions, is presented. The division of flow is shown to have a beneficial effect in reducing the datum below (2m − 1)a from the crest of the weir and still maintaining the proportionality of the flow. Experimental proof with one such orifice-notch is found to have a constant coefficient of discharge of 0.625. The importance of this analysis in the design of grit chambers is emphasized.
Resumo:
In this paper, we present an analysis for the bit error rate (BER) performance of space-time block codes (STBC) from generalized complex orthogonal designs for M-PSK modulation. In STBCs from complex orthogonal designs (COD), the norms of the column vectors are the same (e.g., Alamouti code). However, in generalized COD (GCOD), the norms of the column vectors may not necessarily be the same (e.g., the rate-3/5 and rate-7/11 codes by Su and Xia in [1]). STBCs from GCOD are of interest because of the high rates that they can achieve (in [2], it has been shown that the maximum achievable rate for STBCs from GCOD is bounded by 4/5). While the BER performance of STBCs: from COD (e.g., Alamouti code) can be simply obtained from existing analytical expressions for receive diversity with the same diversity order by appropriately scaling the SNR, this can not be done for STBCs from GCOD (because of the unequal norms of the column vectors). Our contribution in this paper is that we derive analytical expressions for the BER performance of any STBC from GCOD. Our BER analysis for the GCOD captures the performance of STBCs from COD as special cases. We validate our results with two STBCs from GCOD reported by Su and Xia in [1], for 5 and 6 transmit antennas (G(5) and G(6) in [1]) with rates 7/11 and 3/5, respectively.
Resumo:
The association parameter in the diffuswn equaiior, dye fo Wiike one Chong has been interpreted in deferminable properties, thus permitting easily the calculation of the same for unknown systems. The proposed eqyotion a!se holds goods for water as soiute in organic solvenfs. The over-all percentage error remains the sarrse as that of the original equation.
Resumo:
Previous techniques used for solving the 1-D Poisson equation ( PE) rigorously for long-channel asymmetric and independent double-gate (IDG) transistors result in potential models that involve multiple intercoupled implicit equations. As these equations need to be solved self-consistently, such potential models are clearly inefficient for compact modeling. This paper reports a different rigorous technique for solving the same PE by which one can obtain the potential profile of a generalized IDG transistor that involves a single implicit equation. The proposed Poisson solution is shown to be computationally more efficient for circuit simulation than the previous solutions.
Resumo:
Non-uniform sampling of a signal is formulated as an optimization problem which minimizes the reconstruction signal error. Dynamic programming (DP) has been used to solve this problem efficiently for a finite duration signal. Further, the optimum samples are quantized to realize a speech coder. The quantizer and the DP based optimum search for non-uniform samples (DP-NUS) can be combined in a closed-loop manner, which provides distinct advantage over the open-loop formulation. The DP-NUS formulation provides a useful control over the trade-off between bitrate and performance (reconstruction error). It is shown that 5-10 dB SNR improvement is possible using DP-NUS compared to extrema sampling approach. In addition, the close-loop DP-NUS gives a 4-5 dB improvement in reconstruction error.
Resumo:
We propose a novel second order cone programming formulation for designing robust classifiers which can handle uncertainty in observations. Similar formulations are also derived for designing regression functions which are robust to uncertainties in the regression setting. The proposed formulations are independent of the underlying distribution, requiring only the existence of second order moments. These formulations are then specialized to the case of missing values in observations for both classification and regression problems. Experiments show that the proposed formulations outperform imputation.
Resumo:
This paper presents a detailed description of the hardware design and implementation of PROMIDS: a PROtotype Multi-rIng Data flow System for functional programming languages. The hardware constraints and the design trade-offs are discussed. The design of the functional units is described in detail. Finally, we report our experience with PROMIDS.
Resumo:
Motivated by certain situations in manufacturing systems and communication networks, we look into the problem of maximizing the profit in a queueing system with linear reward and cost structure and having a choice of selecting the streams of Poisson arrivals according to an independent Markov chain. We view the system as a MMPP/GI/1 queue and seek to maximize the profits by optimally choosing the stationary probabilities of the modulating Markov chain. We consider two formulations of the optimization problem. The first one (which we call the PUT problem) seeks to maximize the profit per unit time whereas the second one considers the maximization of the profit per accepted customer (the PAC problem). In each of these formulations, we explore three separate problems. In the first one, the constraints come from bounding the utilization of an infinite capacity server; in the second one the constraints arise from bounding the mean queue length of the same queue; and in the third one the finite capacity of the buffer reflect as a set of constraints. In the problems bounding the utilization factor of the queue, the solutions are given by essentially linear programs, while the problems with mean queue length constraints are linear programs if the service is exponentially distributed. The problems modeling the finite capacity queue are non-convex programs for which global maxima can be found. There is a rich relationship between the solutions of the PUT and PAC problems. In particular, the PUT solutions always make the server work at a utilization factor that is no less than that of the PAC solutions.
Resumo:
The continuum model of dipolar solvation dynamics is reviewed. The effects of non-spherical molecular shapes, of non-Debye dielectric relaxation of the polar solvent and of dielectric inhomogeneity of the solvent around the solute dipole are investigated. Several new theoretical results are presented. It is found that our generalized continuum model, which takes into account the dielectric inhomogeneity of the surrounding solvent, provides a description of solvation dynamics consistent with recent experimental results.
Resumo:
The recent spurt of research activities in Entity-Relationship Approach to databases calls for a close scrutiny of the semantics of the underlying Entity-Relationship models, data manipulation languages, data definition languages, etc. For reasons well known, it is very desirable and sometimes imperative to give formal description of the semantics. In this paper, we consider a specific ER model, the generalized Entity-Relationship model (without attributes on relationships) and give denotational semantics for the model as well as a simple ER algebra based on the model. Our formalism is based on the Vienna Development Method—the meta language (VDM). We also discuss the salient features of the given semantics in detail and suggest directions for further work.
Resumo:
Analytical expressions are found for the coupled wavenumbers in an infinite fluid-filled cylindrical shell using the asymptotic methods. These expressions are valid for any general circumferential order (n).The shallow shell theory (which is more accurate at higher frequencies)is used to model the cylinder. Initially, the in vacua shell is dealt with and asymptotic expressions are derived for the shell wavenumbers in the high-and the low-frequency regimes. Next, the fluid-filled shell is considered. Defining a relevant fluid-loading parameter p, we find solutions for the limiting cases of small and large p. Wherever relevant, a frequency scaling parameter along with some ingenuity is used to arrive at an elegant asymptotic expression. In all cases.Poisson's ratio v is used as an expansion variable. The asymptotic results are compared with numerical solutions of the dispersion equation and the dispersion relation obtained by using the more general Donnell-Mushtari shell theory (in vacuo and fluid-filled). A good match is obtained. Hence, the contribution of this work lies in the extension of the existing literature to include arbitrary circumferential orders(n). (C) 2010 Elsevier Ltd. All rights reserved.
Resumo:
It was proposed earlier [P. L. Sachdev, K. R. C. Nair, and V. G. Tikekar, J. Math. Phys. 27, 1506 (1986); P. L. Sachdev and K. R. C. Nair, ibid. 28, 977 (1987)] that the Euler–Painlevé equations y(d2y/dη2)+a(dy/dη)2 +f(η)y(dy/dη)+g(η)y2+b(dy/dη) +c=0 represent generalized Burgers equations (GBE’s) in the same way as Painlevé equations represent the Korteweg–de Vries type of equations. The earlier studies were carried out in the context of GBE’s with damping and those with spherical and cylindrical symmetry. In the present paper, GBE’s with variable coefficients of viscosity and those with inhomogeneous terms are considered for their possible connection to Euler–Painlevé equations. It is found that the Euler–Painlevé equation, which represents the GBE ut+uβux=(δ/2)g(t)uxx, g(t)=(1+t)n, β>0, has solutions, which either decay or oscillate at η=±∞, only when −1
Resumo:
For highly compressible normally consolidated saturated soil the compression index, Cc, is not constant over the entire pressure range. However, the ratio of the compression index and the initial specific volume, generally known as the compression ratio, appears to be constant. Thus settlement seems to depend on Cc/(1 + e) rather than Cc alone. Using the theoretical zero air voids line and the generalized compressibility equation for normally consolidated saturated soils, a generalized and simple equation for compression has been derived in the form: C'c = 0.003wL.