911 resultados para Generalized Concatenated Codes
Resumo:
The 2×2 MIMO profiles included in Mobile WiMAX specifications are Alamouti’s space-time code (STC) fortransmit diversity and spatial multiplexing (SM). The former hasfull diversity and the latter has full rate, but neither of them hasboth of these desired features. An alternative 2×2 STC, which is both full rate and full diversity, is the Golden code. It is the best known 2×2 STC, but it has a high decoding complexity. Recently, the attention was turned to the decoder complexity, this issue wasincluded in the STC design criteria, and different STCs wereproposed. In this paper, we first present a full-rate full-diversity2×2 STC design leading to substantially lower complexity ofthe optimum detector compared to the Golden code with only a slight performance loss. We provide the general optimized form of this STC and show that this scheme achieves the diversitymultiplexing frontier for square QAM signal constellations. Then, we present a variant of the proposed STC, which provides a further decrease in the detection complexity with a rate reduction of 25% and show that this provides an interesting trade-off between the Alamouti scheme and SM.
Resumo:
We design powerful low-density parity-check (LDPC) codes with iterative decoding for the block-fading channel. We first study the case of maximum-likelihood decoding, and show that the design criterion is rather straightforward. Since optimal constructions for maximum-likelihood decoding do not performwell under iterative decoding, we introduce a new family of full-diversity LDPC codes that exhibit near-outage-limit performance under iterative decoding for all block-lengths. This family competes favorably with multiplexed parallel turbo codes for nonergodic channels.
Resumo:
We show how to build full-diversity product codes under both iterative encoding and decoding over non-ergodic channels, in presence of block erasure and block fading. The concept of a rootcheck or a root subcode is introduced by generalizing the same principle recently invented for low-density parity-check codes. We also describe some channel related graphical properties of the new family of product codes, a familyreferred to as root product codes.
Resumo:
Multiple-input multiple-output (MIMO) techniques have become an essential part of broadband wireless communications systems. For example, the recently developed IEEE 802.16e specifications for broadband wireless access include three MIMOprofiles employing 2×2 space-time codes (STCs), and two of these MIMO schemes are mandatory on the downlink of Mobile WiMAX systems. One of these has full rate, and the other has full diversity, but neither of them has both of the desired features. The third profile, namely, Matrix C, which is not mandatory, is both a full rate and a full diversity code, but it has a high decoder complexity. Recently, the attention was turned to the decodercomplexity issue and including this in the design criteria, several full-rate STCs were proposed as alternatives to Matrix C. In this paper, we review these different alternatives and compare them to Matrix C in terms of performances and the correspondingreceiver complexities.
Resumo:
This paper derives approximations allowing the estimation of outage probability for standard irregular LDPC codes and full-diversity Root-LDPC codes used over nonergodic block-fading channels. Two separate approaches are discussed: a numerical approximation, obtained by curve fitting, for both code ensembles, and an analytical approximation for Root-LDPC codes, obtained under the assumption that the slope of the iterative threshold curve of a given code ensemble matches the slope of the outage capacity curve in the high-SNR regime.
Resumo:
This paper presents our investigation on iterativedecoding performances of some sparse-graph codes on block-fading Rayleigh channels. The considered code ensembles are standard LDPC codes and Root-LDPC codes, first proposed in and shown to be able to attain the full transmission diversity. We study the iterative threshold performance of those codes as a function of fading gains of the transmission channel and propose a numerical approximation of the iterative threshold versus fading gains, both both LDPC and Root-LDPC codes.Also, we show analytically that, in the case of 2 fading blocks,the iterative threshold root of Root-LDPC codes is proportional to (α1 α2)1, where α1 and α2 are corresponding fading gains.From this result, the full diversity property of Root-LDPC codes immediately follows.
Resumo:
An important statistical development of the last 30 years has been the advance in regression analysis provided by generalized linear models (GLMs) and generalized additive models (GAMs). Here we introduce a series of papers prepared within the framework of an international workshop entitled: Advances in GLMs/GAMs modeling: from species distribution to environmental management, held in Riederalp, Switzerland, 6-11 August 2001.We first discuss some general uses of statistical models in ecology, as well as provide a short review of several key examples of the use of GLMs and GAMs in ecological modeling efforts. We next present an overview of GLMs and GAMs, and discuss some of their related statistics used for predictor selection, model diagnostics, and evaluation. Included is a discussion of several new approaches applicable to GLMs and GAMs, such as ridge regression, an alternative to stepwise selection of predictors, and methods for the identification of interactions by a combined use of regression trees and several other approaches. We close with an overview of the papers and how we feel they advance our understanding of their application to ecological modeling.
Resumo:
Asymptotic chi-squared test statistics for testing the equality ofmoment vectors are developed. The test statistics proposed aregeneralizedWald test statistics that specialize for different settings by inserting andappropriate asymptotic variance matrix of sample moments. Scaled teststatisticsare also considered for dealing with situations of non-iid sampling. Thespecializationwill be carried out for testing the equality of multinomial populations, andtheequality of variance and correlation matrices for both normal andnon-normaldata. When testing the equality of correlation matrices, a scaled versionofthe normal theory chi-squared statistic is proven to be an asymptoticallyexactchi-squared statistic in the case of elliptical data.
Resumo:
To report the case of a child with short absences and occasional myoclonias since infancy who was first diagnosed with an idiopathic generalized epilepsy, but was documented at follow-up to have a mild phenotype of glucose transporter type 1 deficiency syndrome. Unlike other reported cases of Glut-1 DS and epilepsy, this child had a normal development as well as a normal head growth and neurological examination. Early onset of seizures and later recognized episodes of mild confusion before meals together with persistent atypical EEG features and unexpected learning difficulties led to the diagnosis. Seizure control and neuropsychological improvements were obtained with a ketogenic diet.
Resumo:
Aim This study used data from temperate forest communities to assess: (1) five different stepwise selection methods with generalized additive models, (2) the effect of weighting absences to ensure a prevalence of 0.5, (3) the effect of limiting absences beyond the environmental envelope defined by presences, (4) four different methods for incorporating spatial autocorrelation, and (5) the effect of integrating an interaction factor defined by a regression tree on the residuals of an initial environmental model. Location State of Vaud, western Switzerland. Methods Generalized additive models (GAMs) were fitted using the grasp package (generalized regression analysis and spatial predictions, http://www.cscf.ch/grasp). Results Model selection based on cross-validation appeared to be the best compromise between model stability and performance (parsimony) among the five methods tested. Weighting absences returned models that perform better than models fitted with the original sample prevalence. This appeared to be mainly due to the impact of very low prevalence values on evaluation statistics. Removing zeroes beyond the range of presences on main environmental gradients changed the set of selected predictors, and potentially their response curve shape. Moreover, removing zeroes slightly improved model performance and stability when compared with the baseline model on the same data set. Incorporating a spatial trend predictor improved model performance and stability significantly. Even better models were obtained when including local spatial autocorrelation. A novel approach to include interactions proved to be an efficient way to account for interactions between all predictors at once. Main conclusions Models and spatial predictions of 18 forest communities were significantly improved by using either: (1) cross-validation as a model selection method, (2) weighted absences, (3) limited absences, (4) predictors accounting for spatial autocorrelation, or (5) a factor variable accounting for interactions between all predictors. The final choice of model strategy should depend on the nature of the available data and the specific study aims. Statistical evaluation is useful in searching for the best modelling practice. However, one should not neglect to consider the shapes and interpretability of response curves, as well as the resulting spatial predictions in the final assessment.
Resumo:
The Generalized Assignment Problem consists in assigning a setof tasks to a set of agents with minimum cost. Each agent hasa limited amount of a single resource and each task must beassigned to one and only one agent, requiring a certain amountof the resource of the agent. We present new metaheuristics forthe generalized assignment problem based on hybrid approaches.One metaheuristic is a MAX-MIN Ant System (MMAS), an improvedversion of the Ant System, which was recently proposed byStutzle and Hoos to combinatorial optimization problems, and itcan be seen has an adaptive sampling algorithm that takes inconsideration the experience gathered in earlier iterations ofthe algorithm. Moreover, the latter heuristic is combined withlocal search and tabu search heuristics to improve the search.A greedy randomized adaptive search heuristic (GRASP) is alsoproposed. Several neighborhoods are studied, including one basedon ejection chains that produces good moves withoutincreasing the computational effort. We present computationalresults of the comparative performance, followed by concludingremarks and ideas on future research in generalized assignmentrelated problems.
Resumo:
A Method is offered that makes it possible to apply generalized canonicalcorrelations analysis (CANCOR) to two or more matrices of different row and column order. The new method optimizes the generalized canonical correlationanalysis objective by considering only the observed values. This is achieved byemploying selection matrices. We present and discuss fit measures to assessthe quality of the solutions. In a simulation study we assess the performance of our new method and compare it to an existing procedure called GENCOM,proposed by Green and Carroll. We find that our new method outperforms the GENCOM algorithm both with respect to model fit and recovery of the truestructure. Moreover, as our new method does not require any type of iteration itis easier to implement and requires less computation. We illustrate the methodby means of an example concerning the relative positions of the political parties inthe Netherlands based on provincial data.
Resumo:
In this paper I explore the issue of nonlinearity (both in the datageneration process and in the functional form that establishes therelationship between the parameters and the data) regarding the poorperformance of the Generalized Method of Moments (GMM) in small samples.To this purpose I build a sequence of models starting with a simple linearmodel and enlarging it progressively until I approximate a standard (nonlinear)neoclassical growth model. I then use simulation techniques to find the smallsample distribution of the GMM estimators in each of the models.
Resumo:
This paper presents a general equilibrium model of money demand wherethe velocity of money changes in response to endogenous fluctuations in the interest rate. The parameter space can be divided into two subsets: one where velocity is constant and equal to one as in cash-in-advance models, and another one where velocity fluctuates as in Baumol (1952). Despite its simplicity, in terms of paramaters to calibrate, the model performs surprisingly well. In particular, it approximates the variability of money velocity observed in the U.S. for the post-war period. The model is then used to analyze the welfare costs of inflation under uncertainty. This application calculates the errors derived from computing the costs of inflation with deterministic models. It turns out that the size of this difference is small, at least for the levels of uncertainty estimated for the U.S. economy.