853 resultados para General Systems Theory
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Neutron stars are some of the most fascinating objects in Nature. Essentially all aspects of physics seems to be represented inside them. Their cores are likely to contain deconfined quarks, hyperons and other exotic phases of matter in which the strong interaction is the dominant force. The inner region of their solid crust is penetrated by superfluid neutrons and their magnetic fields may reach well over 1012 Gauss. Moreover, their extreme mean densities, well above the densities of nuclei, and their rapid rotation rates makes them truly relativistic both in the special as well as in the general sense. This thesis deals with a small subset of these phenomena. In particular the exciting possibility of trapping of gravita-tional waves is examined from a theoretical point of view. It is shown that the standard condition R < 3M is not essential to the trapping mechanism. This point is illustrated using the elegant tool provided by the optical geometry. It is also shown that a realistic equation of state proposed in the literature allows stable neutron star models with closed circular null orbits, something which is closely related to trapped gravitational waves. Furthermore, the general relativistic theory of elasticity is reviewed and applied to stellar models. Both static equilibrium as well as radially oscillating configurations with elasticsources are examined. Finally, Killing tensors are considered and their applicability to modeling of stars is discussed
Resumo:
[EN] In this paper, we present a vascular tree model made with synthetic materials and which allows us to obtain images to make a 3D reconstruction.We have used PVC tubes of several diameters and lengths that will let us evaluate the accuracy of our 3D reconstruction. In order to calibrate the camera we have used a corner detector. Also we have used Optical Flow techniques to follow the points through the images going and going back. We describe two general techniques to extract a sequence of corresponding points from multiple views of an object. The resulting sequence of points will be used later to reconstruct a set of 3D points representing the object surfaces on the scene. We have made the 3D reconstruction choosing by chance a couple of images and we have calculated the projection error. After several repetitions, we have found the best 3D location for the point.
Resumo:
The main goal of this thesis is to facilitate the process of industrial automated systems development applying formal methods to ensure the reliability of systems. A new formulation of distributed diagnosability problem in terms of Discrete Event Systems theory and automata framework is presented, which is then used to enforce the desired property of the system, rather then just verifying it. This approach tackles the state explosion problem with modeling patterns and new algorithms, aimed for verification of diagnosability property in the context of the distributed diagnosability problem. The concepts are validated with a newly developed software tool.
Resumo:
Extensive research conducted over the past several decades has indicated that semipermeable membrane behavior (i.e., the ability of a porous medium to restrict the passage of solutes) may have a significant influence on solute migration through a wide variety of clay-rich soils, including both natural clay formations (aquitards, aquicludes) and engineered clay barriers (e.g., landfill liners and vertical cutoff walls). Restricted solute migration through clay membranes generally has been described using coupled flux formulations based on nonequilibrium (irreversible) thermodynamics. However, these formulations have differed depending on the assumptions inherent in the theoretical development, resulting in some confusion regarding the applicability of the formulations. Accordingly, a critical review of coupled flux formulations for liquid, current, and solutes through a semipermeable clay membrane under isothermal conditions is undertaken with the goals of explicitly resolving differences among the formulations and illustrating the significance of the differences from theoretical and practical perspectives. Formulations based on single-solute systems (i.e., uncharged solute), single-salt systems, and general systems containing multiple cations or anions are presented. Also, expressions relating the phenomenological coefficients in the coupled flux equations to relevant soil properties (e.g., hydraulic conductivity and effective diffusion coefficient) are summarized for each system. A major difference in the formulations is shown to exist depending on whether counter diffusion or salt diffusion is assumed. This difference between counter and salt diffusion is shown to affect the interpretation of values for the effective diffusion coefficient in a clay membrane based on previously published experimental data. Solute transport theories based on both counter and salt diffusion then are used to re-evaluate previously published column test data for the same clay membrane. The results indicate that, despite the theoretical inconsistency between the counter-diffusion assumption and the salt-diffusion conditions of the experiments, the predictive ability of solute transport theory based on the assumption of counter diffusion is not significantly different from that based on the assumption of salt diffusion, provided that the input parameters used in each theory are derived under the same assumption inherent in the theory. Nonetheless, salt-diffusion theory is fundamentally correct and, therefore, is more appropriate for problems involving salt diffusion in clay membranes. Finally, the fact that solute diffusion cannot occur in an ideal or perfect membrane is not explicitly captured in any of the theoretical expressions for total solute flux in clay membranes, but rather is generally accounted for via inclusion of an effective porosity, n(e), or a restrictive tortuosity factor, tau(r), in the formulation of Fick's first law for diffusion. Both n(e) and tau(r) have been correlated as a linear function of membrane efficiency. This linear correlation is supported theoretically by pore-scale modeling of solid-liquid interactions, but experimental support is limited. Additional data are needed to bolster the validity of the linear correlation for clay membranes. Copyright 2012 Elsevier B.V. All rights reserved.
Resumo:
Extensive research conducted over the past several decades has indicated that semipermeable membrane behavior (i.e., the ability of a porous medium to restrict the passage of solutes) may have a significant influence on solute migration through a wide variety of clay-rich soils, including both natural clay formations (aquitards, aquicludes) and engineered clay barriers (e.g., landfill liners and vertical cutoff walls). Restricted solute migration through clay membranes generally has been described using coupled flux formulations based on nonequilibrium (irreversible) thermodynamics. However, these formulations have differed depending on the assumptions inherent in the theoretical development, resulting in some confusion regarding the applicability of the formulations. Accordingly, a critical review of coupled flux formulations for liquid, current, and solutes through a semipermeable clay membrane under isothermal conditions is undertaken with the goals of explicitly resolving differences among the formulations and illustrating the significance of the differences from theoretical and practical perspectives. Formulations based on single-solute systems (i.e., uncharged solute), single-salt systems, and general systems containing multiple cations or anions are presented. Also, expressions relating the phenomenological coefficients in the coupled flux equations to relevant soil properties (e.g., hydraulic conductivity and effective diffusion coefficient) are summarized for each system. A major difference in the formulations is shown to exist depending on whether counter diffusion or salt diffusion is assumed. This difference between counter and salt diffusion is shown to affect the interpretation of values for the effective diffusion coefficient in a clay membrane based on previously published experimental data. Solute transport theories based on both counter and salt diffusion then are used to re-evaluate previously published column test data for the same clay membrane. The results indicate that, despite the theoretical inconsistency between the counter-diffusion assumption and the salt-diffusion conditions of the experiments, the predictive ability of solute transport theory based on the assumption of counter diffusion is not significantly different from that based on the assumption of salt diffusion, provided that the input parameters used in each theory are derived under the same assumption inherent in the theory. Nonetheless, salt-diffusion theory is fundamentally correct and, therefore, is more appropriate for problems involving salt diffusion in clay membranes. Finally, the fact that solute diffusion cannot occur in an ideal or perfect membrane is not explicitly captured in any of the theoretical expressions for total solute flux in clay membranes, but rather is generally accounted for via inclusion of an effective porosity, ne, or a restrictive tortuosity factor, tr, in the formulation of Fick's first law for diffusion. Both ne and tr have been correlated as a linear function of membrane efficiency. This linear correlation is supported theoretically by pore-scale modeling of solid-liquid interactions, but experimental support is limited. Additional data are needed to bolster the validity of the linear correlation for clay membranes.
Resumo:
Dual-systems theorists posit distinct modes of reasoning. The intuition system reasons automatically and its processes are unavailable to conscious introspection. The deliberation system reasons effortfully while its processes recruit working memory. The current paper extends the application of such theories to the study of Obsessive-Compulsive Disorder (OCD). Patients with OCD often retain insight into their irrationality, implying dissociable systems of thought: intuition produces obsessions and fears that deliberation observes and attempts (vainly) to inhibit. To test the notion that dual-systems theory can adequately describe OCD, we obtained speeded and unspeeded risk judgments from OCD patients and non-anxious controls in order to quantify the differential effects of intuitive and deliberative reasoning. As predicted, patients deemed negative events to be more likely than controls. Patients also took more time in producing judgments than controls. Furthermore, when forced to respond quickly patients' judgments were more affected than controls'. Although patients did attenuate judgments when given additional time, their estimates never reached the levels of controls'. We infer from these data that patients have genuine difficulty inhibiting their intuitive cognitive system. Our dual-systems perspective is compatible with current theories of the disorder. Similar behavioral tests may prove helpful in better understanding related anxiety disorders. (C) 2013 Elsevier Ltd. All rights reserved.
Resumo:
Neural Networks as Cybernetic Systems is a textbox that combines classical systems theory with artificial neural network technology.
Resumo:
Neural Networks as Cybernetic Systems is a textbox that combines classical systems theory with artificial neural network technology.
Resumo:
Neural Networks as Cybernetic Systems is a textbox that combines classical systems theory with artificial neural network technology. This third edition essentially compares with the 2nd one, but has been improved by correction of errors and by a rearrangement and minor expansion of the sections referring to recurrent networks. These changes hopefully allow for an easier comprehension of the essential aspects of this important domain that has received growing attention during the last years.
Resumo:
eural Networks as Cybernetic Systems is a textbox that combines classical systems theory with artificial neural network technology. This third edition essentially compares with the 2nd one, but has been improved by correction of errors and by a rearrangement and minor expansion of the sections referring to recurrent networks. These changes hopefully allow for an easier comprehension of the essential aspects of this important domain that has received growing attention during the last years.
Resumo:
El estudio de los vínculos entre distintas comunidades generó diversos modelos teóricos e interpretaciones que fueron desarrollados para el estudio de las relaciones de intercambio existentes entre las poblaciones antiguas. En general, estas posturas teóricas se pueden diferenciar entre las que se concentran específicamente en los vínculos de intercambio establecidos entre distintas comunidades y diferentes áreas, y las que analizan el efecto de ellos en los procesos internos de una comunidad. En este trabajo nos enfocamos en el primer aspecto, ya que nuestro objeto es abordar las relaciones de intercambio existentes desde la Alta Nubia hasta el Levante, atravesando Baja Nubia, Alto Egipto y Bajo Egipto durante el período que se extiende desde el 3400 a.C al 3000 a.C., aplicando la teoría sistema-mundo y los análisis de los sistemas-mundo
Resumo:
El estudio de los vínculos entre distintas comunidades generó diversos modelos teóricos e interpretaciones que fueron desarrollados para el estudio de las relaciones de intercambio existentes entre las poblaciones antiguas. En general, estas posturas teóricas se pueden diferenciar entre las que se concentran específicamente en los vínculos de intercambio establecidos entre distintas comunidades y diferentes áreas, y las que analizan el efecto de ellos en los procesos internos de una comunidad. En este trabajo nos enfocamos en el primer aspecto, ya que nuestro objeto es abordar las relaciones de intercambio existentes desde la Alta Nubia hasta el Levante, atravesando Baja Nubia, Alto Egipto y Bajo Egipto durante el período que se extiende desde el 3400 a.C al 3000 a.C., aplicando la teoría sistema-mundo y los análisis de los sistemas-mundo
Resumo:
El estudio de los vínculos entre distintas comunidades generó diversos modelos teóricos e interpretaciones que fueron desarrollados para el estudio de las relaciones de intercambio existentes entre las poblaciones antiguas. En general, estas posturas teóricas se pueden diferenciar entre las que se concentran específicamente en los vínculos de intercambio establecidos entre distintas comunidades y diferentes áreas, y las que analizan el efecto de ellos en los procesos internos de una comunidad. En este trabajo nos enfocamos en el primer aspecto, ya que nuestro objeto es abordar las relaciones de intercambio existentes desde la Alta Nubia hasta el Levante, atravesando Baja Nubia, Alto Egipto y Bajo Egipto durante el período que se extiende desde el 3400 a.C al 3000 a.C., aplicando la teoría sistema-mundo y los análisis de los sistemas-mundo
Resumo:
El cálculo de relaciones binarias fue creado por De Morgan en 1860 para ser posteriormente desarrollado en gran medida por Peirce y Schröder. Tarski, Givant, Freyd y Scedrov demostraron que las álgebras relacionales son capaces de formalizar la lógica de primer orden, la lógica de orden superior así como la teoría de conjuntos. A partir de los resultados matemáticos de Tarski y Freyd, esta tesis desarrolla semánticas denotacionales y operacionales para la programación lógica con restricciones usando el álgebra relacional como base. La idea principal es la utilización del concepto de semántica ejecutable, semánticas cuya característica principal es el que la ejecución es posible utilizando el razonamiento estándar del universo semántico, este caso, razonamiento ecuacional. En el caso de este trabajo, se muestra que las álgebras relacionales distributivas con un operador de punto fijo capturan toda la teoría y metateoría estándar de la programación lógica con restricciones incluyendo los árboles utilizados en la búsqueda de demostraciones. La mayor parte de técnicas de optimización de programas, evaluación parcial e interpretación abstracta pueden ser llevadas a cabo utilizando las semánticas aquí presentadas. La demostración de la corrección de la implementación resulta extremadamente sencilla. En la primera parte de la tesis, un programa lógico con restricciones es traducido a un conjunto de términos relacionales. La interpretación estándar en la teoría de conjuntos de dichas relaciones coincide con la semántica estándar para CLP. Las consultas contra el programa traducido son llevadas a cabo mediante la reescritura de relaciones. Para concluir la primera parte, se demuestra la corrección y equivalencia operacional de esta nueva semántica, así como se define un algoritmo de unificación mediante la reescritura de relaciones. La segunda parte de la tesis desarrolla una semántica para la programación lógica con restricciones usando la teoría de alegorías—versión categórica del álgebra de relaciones—de Freyd. Para ello, se definen dos nuevos conceptos de Categoría Regular de Lawvere y _-Alegoría, en las cuales es posible interpretar un programa lógico. La ventaja fundamental que el enfoque categórico aporta es la definición de una máquina categórica que mejora e sistema de reescritura presentado en la primera parte. Gracias al uso de relaciones tabulares, la máquina modela la ejecución eficiente sin salir de un marco estrictamente formal. Utilizando la reescritura de diagramas, se define un algoritmo para el cálculo de pullbacks en Categorías Regulares de Lawvere. Los dominios de las tabulaciones aportan información sobre la utilización de memoria y variable libres, mientras que el estado compartido queda capturado por los diagramas. La especificación de la máquina induce la derivación formal de un juego de instrucciones eficiente. El marco categórico aporta otras importantes ventajas, como la posibilidad de incorporar tipos de datos algebraicos, funciones y otras extensiones a Prolog, a la vez que se conserva el carácter 100% declarativo de nuestra semántica. ABSTRACT The calculus of binary relations was introduced by De Morgan in 1860, to be greatly developed by Peirce and Schröder, as well as many others in the twentieth century. Using different formulations of relational structures, Tarski, Givant, Freyd, and Scedrov have shown how relation algebras can provide a variable-free way of formalizing first order logic, higher order logic and set theory, among other formal systems. Building on those mathematical results, we develop denotational and operational semantics for Constraint Logic Programming using relation algebra. The idea of executable semantics plays a fundamental role in this work, both as a philosophical and technical foundation. We call a semantics executable when program execution can be carried out using the regular theory and tools that define the semantic universe. Throughout this work, the use of pure algebraic reasoning is the basis of denotational and operational results, eliminating all the classical non-equational meta-theory associated to traditional semantics for Logic Programming. All algebraic reasoning, including execution, is performed in an algebraic way, to the point we could state that the denotational semantics of a CLP program is directly executable. Techniques like optimization, partial evaluation and abstract interpretation find a natural place in our algebraic models. Other properties, like correctness of the implementation or program transformation are easy to check, as they are carried out using instances of the general equational theory. In the first part of the work, we translate Constraint Logic Programs to binary relations in a modified version of the distributive relation algebras used by Tarski. Execution is carried out by a rewriting system. We prove adequacy and operational equivalence of the semantics. In the second part of the work, the relation algebraic approach is improved by using allegory theory, a categorical version of the algebra of relations developed by Freyd and Scedrov. The use of allegories lifts the semantics to typed relations, which capture the number of logical variables used by a predicate or program state in a declarative way. A logic program is interpreted in a _-allegory, which is in turn generated from a new notion of Regular Lawvere Category. As in the untyped case, program translation coincides with program interpretation. Thus, we develop a categorical machine directly from the semantics. The machine is based on relation composition, with a pullback calculation algorithm at its core. The algorithm is defined with the help of a notion of diagram rewriting. In this operational interpretation, types represent information about memory allocation and the execution mechanism is more efficient, thanks to the faithful representation of shared state by categorical projections. We finish the work by illustrating how the categorical semantics allows the incorporation into Prolog of constructs typical of Functional Programming, like abstract data types, and strict and lazy functions.