927 resultados para Gene Flow


Relevância:

60.00% 60.00%

Publicador:

Resumo:

Taxonomic markers (head structure morphometry, isoenzymes and randon amplified polymorphism of DNA - RAPD) were used to understand the population dynamics of Triatoma vitticeps, predominant triatomine species in Itanhomi district, using samples obtained from domestic, peridomiciliary and sylvatic habitats. Morphometric analysis revealed sexual dimorphism within the three samples although specimens could not be separated according to the habitat in which they were captured. Forty-two bands were analyzed from RAPD profiles generated using four primers. A dendrogram constructed from Dice's similarity coefficient values showed that migration of the insects between the habitats has occurred, without structuring of populations. Moreover, the dendrogram obtained from the genetic distance values showed an important gene flow between the sylvatic and domestic habitats. No polymorphism was found in the electrophoretic mobility of proteins for the ten enzymes studied. Our results revealed movement of triatomines between the three habitats, suggesting that the presence of T. vitticeps in houses should not be ignored. As invasion of houses by sylvatic insects is frequent and the natural infection indices of this species are among the highest known, epidemiological vigilance studies may reveal possible changes in T. vitticeps behaviour which could present future risks to public health.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

To understand the transmission of a vector-borne disease, knowledge of the magnitude of dispersal among vector populations is essential because of its influence on pathogen transfer. The principal vector of dengue, the most common arboviral disease in the world, is the mosquito Aedes aegypti (L.). This tropical and subtropical species is native to Africa but has dispersed worldwide since the XV century. In Argentina, the species was declared eradicated in 1963, but has reinfested the country in recent years. In the present work, we used RAPD-PCR markers to assess the levels of genetic variability and differentiation among populations of Ae. aegypti (the vector of dengue and yellow fever) in Córdoba, the second largest city in Argentina. We detected similar levels of genetic variability (He between 0.351-0.404) across samples and significant genetic differentiation between most population pairs within the city (F ST between 0.0013-0.0253). Genetic distances indicate that there are three distinct groups, formed predominantly by populations that are connected by, or near, main roads. This suggests that, in addition to other factors such as availability of oviposition sites or step-by-step migration, passive transport plays an important role in gene flow within the city.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Understanding why dispersal is sex-biased in many taxa is still a major concern in evolutionary ecology. Dispersal tends to be male-biased in mammals and female-biased in birds, but counter-examples exist and little is known about sex bias in other taxa. Obtaining accurate measures of dispersal in the field remains a problem. Here we describe and compare several methods for detecting sex-biased dispersal using bi-parentally inherited, codominant genetic markers. If gene flow is restricted among populations, then the genotype of an individual tells something about its origin. Provided that dispersal occurs at the juvenile stage and that sampling is carried out on adults, genotypes sampled from the dispersing sex should on average be less likely (compared to genotypes from the philopatric sex) in the population in which they were sampled. The dispersing sex should be less genetically structured and should present a larger heterozygote deficit. In this study we use computer simulations and a permutation test on four statistics to investigate the conditions under which sex-biased dispersal can be detected. Two tests emerge as fairly powerful. We present results concerning the optimal sampling strategy (varying number of samples, individuals, loci per individual and level of polymorphism) under different amounts of dispersal for each sex. These tests for biases in dispersal are also appropriate for any attribute (e.g. size, colour, status) suspected to influence the probability of dispersal. A windows program carrying out these tests can be freely downloaded from http://www.unil.ch/izea/softwares/fstat.html

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Lymphatic filarial (LF) parasites have been under anti-filarial drug pressure for more than half a century. Currently, annual mass drug administration (MDA) of diethylcarbamazine (DEC) or ivermectin in combination with albendazole (ALB) have been used globally to eliminate LF. Long-term chemotherapies exert significant pressure on the genetic structure of parasitic populations. We investigated the genetic variation among 210 Wuchereria bancrofti populations that were under three different chemotherapy strategies, namely MDA with DEC alone (group I, n = 74), MDA with DEC and ALB (group II, n = 60) and selective therapy (ST) with DEC (group III, n = 34) to understand the impact of these three drug regimens on the parasite genetic structure. Randomly amplified polymorphic DNA profiles were generated for the three groups of parasite populations; the gene diversity, gene flow and genetic distance values were determined and phylogenetic trees were constructed. Analysis of these parameters indicated that parasite populations under ST with a standard dose of DEC (group III) were genetically more diverse (0.2660) than parasite populations under MDA with DEC alone (group I, H = 0.2197) or with DEC + ALB (group II, H = 0.2317). These results indicate that the MDA may reduce the genetic diversity of W. bancrofti populations when compared to the genetic diversity of parasite populations under ST.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

To elucidate the Anopheles nuneztovari s.l. taxonomic status at a microgeographic level in four malaria endemic localities from Antioquia and Córdoba, Colombia, fragments of the cytochrome oxidase subunit I (COI) and the white gene were used. The COI analysis showed low genetic differentiation with fixation index (F ST) levels between -0.02-0.137 and Nm values between 3-∞, indicating the presence of high gene flow among An. nuneztovari s.l. populations from the four localities. The COI network showed a single most common haplotype, type 1 (n = 55), present in all localities, as the likely ancestral haplotype. Analysis of the white gene showed that An. nuneztovari s.l. populations from both departments grouped with haplotypes 19 and 20, which are part of lineage 3 reported previously. The results of the present study suggest that An. nuneztovari s.l. is a single taxon in the area of the present study.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Abstract This work investigates the outcome of the interaction of the multiple causes of selection acting on dispersal in metapopulations. Dispersal, defined here as the ability of individuals to move out of their natal population to reproduce in an other one, has three main causes. First, population variability, as caused by random population extinctions, induces high incentives to disperse through the probability to recolonize an empty population and thus to escape competition for space. This adds to the second cause, kin competition avoidance where individuals in a crowded patch will benefit from the release of competition with relatives caused by dispersal. Dispersal may thus be viewed as an altruistic act. Third, dispersal might evolve as a strategy of avoiding inbred matings which are expected to bear fitness costs due to the presence of a mutation load. The interaction of inbreeding avoidance and kin competition is explored in chapter 2. Conditions conducive to the establishment of a high relatedness within population are expected to induce high dispersal through both kin competition avoidance and inbreeding avoidance. However, the dynamics of inbreeding depression is bound to depend on the level of gene flow as well as on the deleterious mutation parameters. Mutations more prone to settle a high level of inbreeding depression will select for increased dispersal. Chapter 3 investigates the effect of the mating system on the joint dynamics of dispersal and inbreeding depression. Higher inbreeding rates as those found in various mating systems lead to a more efficient purge of the deleterious mutations. However, this decrease in the costs of inbreeding are usually accompanied by a higher within deme relatedness which balances the decreased effect of inbreeding avoidance on the evolution of dispersal. Finally, population turnover, as found in most natural populations has a dual effect on dispersal. Indeed, it increases dispersal by the increased probability of winning a breeding slot in extinct demes it creates but, on the other hand, it counter-selects for dispersal through the slow establishment of unsaturated demic conditions which contribute to lower the local competition for space. Résumé Ce travail se propose d'étudier les effets conjoints des multiples causes de l'évolution de la dispersion en métapopulation. La dispersion, définie ici comme étant la capacité de quitter sa population d'origine pour se reproduire dans une antre population, possède trois principales causes. Premièrement, l'extinction aléatoire de populations sélectionne pour plus de dispersion car elle augmente la Probabilité de recoloniser un patch éteint et donc d'échapper à la compétition locale. La seconde cause, l'évitement de la compétition de parentèle, sélectionne pour plus de dispersion par les bénéfices qu'elle apporte par diminution de la compétition entre individus apparentés. Troisièmement, la dispersion évolue "comme stratégie d'évitement de la dépression de consanguinité présente dans des petites populations isolées. L'interaction entre l'évitement de la consanguinité et de la compétition de parentèle est étudiée dans le chapitre 2. Les conditions conduisant à l'établissement d'un fort apparentement à l'intérieur des populations sont celles qui génèrent le plus de sélection pour la dispersion. Cependant, la dynamique de la dépression de consanguinité est dépendante de la dispersion entre populations ainsi que des paramètres des mutations délétères. Les mutations créant le plus de dépression de consanguinité sont celles qui sélectionneront le plus pour de la dispersion. Le chapitre 3 s'intéresse aux effets du système de reproduction sur la dynamique conjointe du fardeau de mutation et de la dispersion. La purge des mutations délétère étant plus sévère dans des conditions de forte consanguinité, elle diminue les coûts de la consanguinité mais est habituellement accompagné par une augmentation de l'apparentement et donc l'effet peut être neutre sur la dispersion. Finalement, le turnover de populations a un effet dual sur la dispersion. La dispersion est sélectionnée par l'augmentation de la probabilité de gagner une place de reproduction dans des patchs éteints mais elle est également contre sélectionnée par la désaturation des patchs causée par l'extinction et la diminution de la compétition pour l'espace qui intervient dans ce cas.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Analyses of mitochondrial DNA (mtDNA) control region polymorphism and of variation at 10 nuclear microsatellite loci were used to investigate the mechanisms and genetic consequences of postglacial expansion of Myotis myotis in Europe. Initial sampling consisted of 480 bats genotyped in 24 nursery colonies arranged along a transect of approximately 3000 km. The phylogeographical survey based on mtDNA sequences revealed the existence of major genetic subdivisions across this area, with several suture zones between haplogroups. Such zones of secondary contact were found in the Alps and Rhodopes, whereas other potential barriers to gene flow, like the Pyrenees, did not coincide with genetic discontinuities. Areas of population admixture increased locally the genetic diversity of colonies, which confounded the northward decrease in nucleotide diversity predicted using classical models of postglacial range expansion. However, when analyses were restricted to a subset of 15 nurseries originating from a single presumed glacial refugium, mtDNA polymorphism did indeed support a northwards decrease in diversity. Populations were also highly structured (PhiST = 0.384). Conversely, the same subset of colonies showed no significant latitudinal decrease in microsatellite diversity and much less population structure (FST = 0.010), but pairwise genetic differentiation at these nuclear markers was strongly correlated with increasing geographical distance. Together, this evidence suggests that alleles carried via male bats have maintained enough nuclear gene flow to counteract the effects of recurrent bottlenecks generally associated with recolonization processes. As females are highly philopatric, we argue that the maternally transmitted mtDNA marker better reflects the situation of past, historical gene flow, whereas current levels of gene flow are better reflected by microsatellite markers.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Genetic differentiation is a consequence of the combination of drift and restriction in gene flow between populations due to barriers to dispersal, or selection against individuals resulting from inter-population matings In phytophagous insects, local adaptation to different kinds of host plants can sometimes lead to reproductive isolation and thus to genetic structuring, or even to speciation Acanthoscelides. obtectus Say is a bean bruchid specialized on beans of the Phaseolus vulgaris group, attacking both wild and domesticated forms of P vulgaris., and P coccineus This study reveals that the genetic structure of populations of this bruchid is explained mainly by their geographical location and is not related to a particular kind (wild or domesticated) of bean In contrast, the species of bean might have led, to some extent, to genetic structuring in these bruchids, although our sampling is too limited to address such process unambiguously. If confirmed, it would corroborate preliminary results found for the parasitoid species that attack Acanthoscelides species, which might show a genetic structure depending on the species of host plant

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Sex-biased dispersal is an almost ubiquitous feature of mammalian life history, but the evolutionary causes behind these patterns still require much clarification. A quarter of a century since the publication of seminal papers describing general patterns of sex-biased dispersal in both mammals and birds, we review the advances in our theoretical understanding of the evolutionary causes of sex-biased dispersal, and those in statistical genetics that enable us to test hypotheses and measure dispersal in natural populations. We use mammalian examples to illustrate patterns and proximate causes of sex-biased dispersal, because by far the most data are available and because they exhibit an enormous diversity in terms of dispersal strategy, mating and social systems. Recent studies using molecular markers have helped to confirm that sex-biased dispersal is widespread among mammals and varies widely in direction and intensity, but there is a great need to bridge the gap between genetic information, observational data and theory. A review of mammalian data indicates that the relationship between direction of sex-bias and mating system is not a simple one. The role of social systems emerges as a key factor in determining intensity and direction of dispersal bias, but there is still need for a theoretical framework that can account for the complex interactions between inbreeding avoidance, kin competition and cooperation to explain the impressive diversity of patterns.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

In populations of various ant species, many queens reproduce in the same nest (polygyny), and colony boundaries appear to be absent with individuals able to move fi eely between nests (unicoloniality). Such societies depart strongly from a simple family structure and pose a potential challenge to kin selection theory, because high queen number coupled with unrestricted gene flow among nests should result in levels of relatedness among nestmates close to zero. This study investigated the breeding system and genetic structure of a highly polygynous and largely unicolonial population of the wood ant Formica paralugubris. A microsatellite analysis revealed that nestmate workers, reproductive queens and reproductive males (the queens' mates) are all equally related to each other, with relatedness estimates centring around 0.14. This suggests that most of the queens and males reproducing in the study population had mated within or close to their natal nest, and that the queens did not disperse far after mating. We developed a theoretical model to investigate how the breeding system affects the relatedness structure of polygynous colonies. By combining the model and our empirical data, it was estimated that about 99.8% of the reproducing queens and males originated from within the nest, or from a nearby nest. This high rate of local mating and the rarity of long-distance dispersal maintain significant relatedness among nestmates, and contrast with the common view that unicoloniality is coupled with unrestricted gene flow among nests.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Most models on introgression from genetically modified (GM) plants have focused on small spatial scales, modelling gene flow from a field containing GM plants into a single adjacent population of a wild relative. Here, we present a model to study the effect of introgression from multiple plantations into the whole metapopulation of the wild relative. The most important result of the model is that even very low levels of introgression and selection can lead to a high probability that the transgene goes to fixation in the metapopulation. Furthermore, the overall frequency of the transgene in the metapopulation, after a certain number of generations of introgression, depends on the population dynamics. If there is a high rate of migration or a high rate of population turnover, the overall transgene frequency is much higher than with lower rates. However, under an island model of population structure, this increased frequency has only a very small effect on the probability of fixation of the transgene. Considering these results, studies on the potential ecological risks of introgression from GM plants should look not only at the rate of introgression and selection acting on the transgene, but also at the metapopulation dynamics of the wild relative.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Genetic diversity of contemporary domesticated species is shaped by both natural and human-driven processes. However, until now, little is known about how domestication has imprinted the variation of fruit tree species. In this study, we reconstruct the recent evolutionary history of the domesticated almond tree, Prunus dulcis, around the Mediterranean basin, using a combination of nuclear and chloroplast microsatellites [i.e. simple sequence repeat (SSRs)] to investigate patterns of genetic diversity. Whereas conservative chloroplast SSRs show a widespread haplotype and rare locally distributed variants, nuclear SSRs show a pattern of isolation by distance with clines of diversity from the East to the West of the Mediterranean basin, while Bayesian genetic clustering reveals a substantial longitudinal genetic structure. Both kinds of markers thus support a single domestication event, in the eastern side of the Mediterranean basin. In addition, model-based estimation of the timing of genetic divergence among those clusters is estimated sometime during the Holocene, a result that is compatible with human-mediated dispersal of almond tree out of its centre of origin. Still, the detection of region-specific alleles suggests that gene flow from relictual wild preglacial populations (in North Africa) or from wild counterparts (in the Near East) could account for a fraction of the diversity observed.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Evolutionary processes acting at the expanding margins of a species' range are still poorly understood. Genetic drift is considered prevalent in marginal populations, and the maintenance of genetic diversity during recolonization might seem puzzling. To investigate such processes, a fine-scale investigation of 219 individuals was performed within a population of Biscutella laevigata (Brassicaceae), located at the leading edge of its range. The survey used amplified fragment length polymorphisms (AFLPs). As commonly reported across the whole species distribution range, individual density and genetic diversity decreased along the local axis of recolonization of this expanding population, highlighting the enduring effect of the historical colonization on present-day diversity. The self-incompatibility system of the plant may have prevented local inbreeding in newly found patches and sustained genetic diversity by ensuring gene flow from established populations. Within the more continuously populated region, spatial analysis of genetic structure revealed restricted gene flow among individuals. The distribution of genotypes formed a mosaic of relatively homogenous patches within the continuous population. This pattern could be explained by a history of expansion by long-distance dispersal followed by fine-scale diffusion (that is, a stratified dispersal combination). The secondary contact among expanding patches apparently led to admixture among differentiated genotypes where they met (that is, a reshuffling effect). This type of dynamics could explain the maintenance of genetic diversity during recolonization.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Knowledge of the genetic structure of plant populations is necessary for the understanding of the dynamics of major ecological processes. It also has applications in conservation biology and risk assessment for genetically modified crops. This paper reports the genetic structure of a linear population of sea beet, Beta vulgaris ssp. maritima (the wild relative of sugar beet), on Furzey Island, Poole Harbour. The relative spatial positions of the plants were accurately mapped and the plants were scored for variation at isozyme and RFLP loci. Structure was analysed by repeated subdivision of the population to find the average size of a randomly mating group. Estimates of F-ST between randomly mating units were then made, and gave patterns consistent with the structure of the population being determined largely by founder effects. The implications of these results for the monitoring of transgene spread in wild sea beet populations are discussed.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The use of molecular data to reconstruct the history of divergence and gene flow between populations of closely related taxa represents a challenging problem. It has been proposed that the long-standing debate about the geography of speciation can be resolved by comparing the likelihoods of a model of isolation with migration and a model of secondary contact. However, data are commonly only fit to a model of isolation with migration and rarely tested against the secondary contact alternative. Furthermore, most demographic inference methods have neglected variation in introgression rates and assume that the gene flow parameter (Nm) is similar among loci. Here, we show that neglecting this source of variation can give misleading results. We analysed DNA sequences sampled from populations of the marine mussels, Mytilus edulis and M. galloprovincialis, across a well-studied mosaic hybrid zone in Europe and evaluated various scenarios of speciation, with or without variation in introgression rates, using an Approximate Bayesian Computation (ABC) approach. Models with heterogeneous gene flow across loci always outperformed models assuming equal migration rates irrespective of the history of gene flow being considered. By incorporating this heterogeneity, the best-supported scenario was a long period of allopatric isolation during the first three-quarters of the time since divergence followed by secondary contact and introgression during the last quarter. By contrast, constraining migration to be homogeneous failed to discriminate among any of the different models of gene flow tested. Our simulations thus provide statistical support for the secondary contact scenario in the European Mytilus hybrid zone that the standard coalescent approach failed to confirm. Our results demonstrate that genomic variation in introgression rates can have profound impacts on the biological conclusions drawn from inference methods and needs to be incorporated in future studies.