949 resultados para Gene Expression Regulation, Plant


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Jasmonates, potent lipid mediators of defense gene expression in plants, are rapidly synthesized in response to wounding. These lipid mediators also stimulate their own production via a positive feedback circuit, which depends on both JA synthesis and JA signaling. To date, molecular components regulating the activation of jasmonate biogenesis and its feedback loop have been poorly characterized. We employed a genetic screen capable of detecting the misregulated activity of 13-lipoxygenase, which operates at the entry point of the jasmonate biosynthesis pathway. Leaf extracts from the Arabidopsis fou2 (fatty acid oxygenation upregulated 2) mutant displayed an increased capacity to catalyze the synthesis of lipoxygenase (LOX) metabolites. Quantitative oxylipin analysis identified less than twofold increased jasmonate levels in healthy fou2 leaves compared to wild-type; however, wounded fou2 leaves strongly increased jasmonate biogenesis compared to wounded wild-type. Furthermore, the plants displayed enhanced resistance to the fungus Botrytis cinerea. Higher than wild-type LOX activity and enhanced resistance in the fou2 mutant depend fully on a functional jasmonate response pathway. The fou2 mutant carries a missense mutation in the putative voltage sensor of the Two Pore Channel 1 gene (TPC1), which encodes a Ca(2+)-permeant non-selective cation channel. Patch-clamp analysis of fou2 vacuolar membranes showed faster time-dependent conductivity and activation of the mutated channel at lower membrane potentials than wild-type. The results indicate that cation fluxes exert strong control over the positive feedback loop whereby JA stimulates its own synthesis.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

To gain further insight into abscisic acid (ABA) signaling and its role in growth regulation, we have screened for Arabidopsis (Arabidopsis thaliana) mutants hypersensitive to ABA-mediated root growth inhibition. As a result, we have identified a loss-of-function allele of BREVIS RADIX (BRX) in the Columbia background, named brx-2, which shows enhanced response to ABA-mediated inhibition of root growth. BRX encodes a key regulator of cell proliferation and elongation in the root, which has been implicated in the brassinosteroid (BR) pathway as well as in the regulation of auxin-responsive gene expression. Mutants affected in BR signaling that are not impaired in root growth, such as bes1-D, bzr1-D, and bsu1-D, also showed enhanced sensitivity to ABA-mediated inhibition of root growth. Triple loss-of-function mutants affected in PP2Cs, which act as negative regulators of ABA signaling, showed impaired root growth in the absence of exogenous ABA, indicating that disturbed regulation of ABA sensitivity impairs root growth. In agreement with this result, diminishing ABA sensitivity of brx-2 by crossing it with a 35S:HAB1 ABA-insensitive line allowed significantly higher recovery of root growth after brassinolide treatment. Finally, transcriptomic analysis revealed that ABA treatment negatively affects auxin signaling in wild-type and brx-2 roots and that ABA response is globally altered in brx-2. Taken together, our results reveal an interaction between BRs, auxin, and ABA in the control of root growth and indicate that altered sensitivity to ABA is partly responsible for the brx short-root phenotype.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Most organisms use circadian oscillators to coordinate physiological and developmental processes such as growth with predictable daily environmental changes like sunrise and sunset. The importance of such coordination is highlighted by studies showing that circadian dysfunction causes reduced fitness in bacteria and plants, as well as sleep and psychological disorders in humans. Plant cell growth requires energy and water-factors that oscillate owing to diurnal environmental changes. Indeed, two important factors controlling stem growth are the internal circadian oscillator and external light levels. However, most circadian studies have been performed in constant conditions, precluding mechanistic study of interactions between the clock and diurnal variation in the environment. Studies of stem elongation in diurnal conditions have revealed complex growth patterns, but no mechanism has been described. Here we show that the growth phase of Arabidopsis seedlings in diurnal light conditions is shifted 8-12 h relative to plants in continuous light, and we describe a mechanism underlying this environmental response. We find that the clock regulates transcript levels of two basic helix-loop-helix genes, phytochrome-interacting factor 4 (PIF4) and PIF5, whereas light regulates their protein abundance. These genes function as positive growth regulators; the coincidence of high transcript levels (by the clock) and protein accumulation (in the dark) allows them to promote plant growth at the end of the night. Thus, these two genes integrate clock and light signalling, and their coordinated regulation explains the observed diurnal growth rhythms. This interaction may serve as a paradigm for understanding how endogenous and environmental signals cooperate to control other processes.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A simple non-targeted differential HPLC-APCI/MS approach has been developed in order to survey metabolome modifications that occur in the leaves of Arabidopsis thaliana following wound-induced stress. The wound-induced accumulation of metabolites, particularly oxylipins, was evaluated by HPLC-MS analysis of crude leaf extracts. A generic, rapid and reproducible pressure liquid extraction procedure was developed for the analysis of restricted leaf samples without the need for specific sample preparation. The presence of various oxylipins was determined by head-to-head comparison of the HPLC-MS data, filtered with a component detection algorithm, and automatically compared with the aid of software searching for small differences in similar HPLC-MS profiles. Repeatability was verified in several specimens belonging to different series. Wound-inducible jasmonates were efficiently highlighted by this non-targeted approach without the need for complex sample preparation as is the case for the 'oxylipin signature' procedure based on GC-MS. Furthermore this HPLC-MS screening technique allowed the isolation of induced compounds for further characterisation by capillary-scale NMR (CapNMR) after HPLC scale-up. In this paper, the screening method is described and applied to illustrate its potential for monitoring polar and non-polar stress-induced constituents as well as its use in combination with CapNMR for the structural assignment of wound-induced compounds of interest

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Metabolic adjustment to changing environmental conditions, particularly balancing of growth and defense responses, is crucial for all organisms to survive. The evolutionary conserved AMPK/Snf1/SnRK1 kinases are well-known metabolic master regulators in the low-energy response in animals, yeast and plants. They act at two different levels: by modulating the activity of key metabolic enzymes, and by massive transcriptional reprogramming. While the first part is well established, the latter function is only partially understood in animals and not at all in plants. Here we identified the Arabidopsis transcription factor bZIP63 as key regulator of the starvation response and direct target of the SnRK1 kinase. Phosphorylation of bZIP63 by SnRK1 changed its dimerization preference, thereby affecting target gene expression and ultimately primary metabolism. A bzip63 knock-out mutant exhibited starvation-related phenotypes, which could be functionally complemented by wild type bZIP63, but not by a version harboring point mutations in the identified SnRK1 target sites.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Plant survival under environmental stress requires the integration of multiple signaling pathways into a coordinated response, but the molecular mechanisms underlying this integration are poorly understood. Stress-derived energy deprivation activates the Snf1-related protein kinases1 (SnRK1s), triggering a vast transcriptional and metabolic reprogramming that restores homeostasis and promotes tolerance to adverse conditions. Here, we show that two clade A type 2C protein phosphatases (PP2Cs), established repressors of the abscisic acid (ABA) hormonal pathway, interact with the SnRK1 catalytic subunit causing its dephosphorylation and inactivation. Accordingly, SnRK1 repression is abrogated in double and quadruple pp2c knockout mutants, provoking, similarly to SnRK1 overexpression, sugar hypersensitivity during early seedling development. Reporter gene assays and SnRK1 target gene expression analyses further demonstrate that PP2C inhibition by ABA results in SnRK1 activation, promoting SnRK1 signaling during stress and once the energy deficit subsides. Consistent with this, SnRK1 and ABA induce largely overlapping transcriptional responses. Hence, the PP2C hub allows the coordinated activation of ABA and energy signaling, strengthening the stress response through the cooperation of two key and complementary pathways.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The tremendous diversity of leaf shapes has caught the attention of naturalists for centuries. In addition to interspecific and intraspecific differences, leaf morphologies may differ in single plants according to age, a phenomenon known as heteroblasty. In Arabidopsis thaliana, the progression from the juvenile to the adult phase is characterized by increased leaf serration. A similar trend is seen in species with more complex leaves, such as the A. thaliana relative Cardamine hirsuta, in which the number of leaflets per leaf increases with age. Although the genetic changes that led to the overall simpler leaf architecture in A. thaliana are increasingly well understood, less is known about the events underlying age-dependent changes within single plants, in either A. thaliana or C. hirsuta. Here, we describe a conserved miRNA transcription factor regulon responsible for an age-dependent increase in leaf complexity. In early leaves, miR319-targeted TCP transcription factors interfere with the function of miR164-dependent and miR164-independent CUC proteins, preventing the formation of serrations in A. thaliana and of leaflets in C. hirsuta. As plants age, accumulation of miR156-regulated SPLs acts as a timing cue that destabilizes TCP-CUC interactions. The destabilization licenses activation of CUC protein complexes and thereby the gradual increase of leaf complexity in the newly formed organs. These findings point to posttranslational interaction between unrelated miRNA-targeted transcription factors as a core feature of these regulatory circuits.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

MicroRNAs (miRNAs) control gene expression mostly post-transcriptionally by guiding transcript cleavage and/or translational repression of complementary mRNA targets, thereby regulating developmental processes and stress responses. Despite the remarkable expansion of the field, the mechanisms underlying miRNA activity are not fully understood. In this article, we describe a transient expression system in Arabidopsis mesophyll protoplasts, which is highly amenable for the dissection of miRNA pathways. We show that by transiently overexpressing primary miRNAs and target mimics, we can manipulate miRNA levels and consequently impact on their targets. Furthermore, we developed a set of luciferase-based sensors for quantifying miRNA activity that respond specifically to both endogenous and overexpressed miRNAs and target mimics. We demonstrate that these miRNA sensors can be used to test the impact of putative components of the miRNA pathway on miRNA activity, as well as the impact of specific mutations, by either overexpression or the use of protoplasts from the corresponding mutants. We further show that our miRNA sensors can be used for investigating the effect of chemicals on miRNA activity. Our cell-based transient expression system is fast and easy to set up, and generates quantitative results, being a powerful tool for assaying miRNA activity in vivo.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Glutamine synthetase (GS) is a vital enzyme for the assimilation of ammonia into amino acids in higher plants. In legumes, GS plays a crucial role in the assimilation of the ammonium released by nitrogen-fixing bacteria in root nodules, constituting an important metabolic knob controlling the nitrogen (N) assimilatory pathways. To identify new regulators of nodule metabolism, we profiled the transcriptome of Medicago truncatula nodules impaired in N assimilation by specifically inhibiting GS activity using phosphinothricin (PPT). Global transcript expression of nodules collected before and after PPT addition (4, 8, and 24 h) was assessed using Affymetrix M. truncatula GeneChip arrays. Hundreds of genes were regulated at the three time points, illustrating the dramatic alterations in cell metabolism that are imposed on the nodules upon GS inhibition. The data indicate that GS inhibition triggers a fast plant defense response, induces premature nodule senescence, and promotes loss of root nodule identity. Consecutive metabolic changes were identified at the three time points analyzed. The results point to a fast repression of asparagine synthesis and of the glycolytic pathway and to the synthesis of glutamate via reactions alternative to the GS/GOGAT cycle. Several genes potentially involved in the molecular surveillance for internal organic N availability are identified and a number of transporters potentially important for nodule functioning are pinpointed. The data provided by this study contributes to the mapping of regulatory and metabolic networks involved in root nodule functioning and highlight candidate modulators for functional analysis.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Grapevine is an extremely important crop worldwide.In southern Europe, post-flowering phases of the growth cycle can occur under high temperatures, excessive light, and drought conditions at soil and/or atmospheric level. In this study, we subjected greenhouse grown grapevine, variety Aragonez, to two individual abiotic stresses, water deficit stress(WDS), and heat stress (HS). The adaptation of plants to stress is a complex response triggered by cascades of molecular net works involved in stress perception, signal transduction, and the expression of specific stress-related genes and metabolites. Approaches such as array-based transcript profiling allow assessing the expression of thousands of genes in control and stress tissues. Using microarrays, we analyzed the leaf transcriptomic profile of the grapevine plants. Photosynthesis measurements verified that the plants were significantly affected by the stresses applied. Leaf gene expression was obtained using a high-throughput transcriptomic grapevine array, the 23K custom-made Affymetrix Vitis GeneChip. We identified 1,594 genes as differentially expressed between control and treatments and grouped them into ten major functional categories using MapMan software. The transcriptome of Aragonez was more significantly affected by HS when compared with WDS. The number of genes coding for heat-shock proteins and transcription factors expressed solely in response to HS suggesting their expression as unique signatures of HS. However, across-talk between the response pathways to both stresses was observed at the level of AP2/ERF transcription factors.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Dissertation presented to obtain the Ph.D degree in Plant Physiology

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The present work is to understand the alterations of total Muscarinic and Muscarinic MI receptors in brain and pancreatic islets of Streptozotocin induced diabetic rats. The work focuses on the evaluation of the antihyperglycemic activity of aqueous extracts of Aegle marmelose and Costus pictus leaves in vivo and the changes in the total Muscarinic and Muscarinic MI receptors during diabetes and after the treatment with insulin. The insulin secretory activity of Aegle marmelose and Costus pictus leaf extracts and the effect of cholinergic receptor agonist were investigated in vitro using rat primary pancreatic islet culture. Muscarinic MI receptor kinetics and gene expression during diabetes and regulation of insulin secretion by Aegle marmelose and Costus pie/us leaf extracts will help us to elucidate the role of Muscarinic and Muscarinic MI receptors in hyperglycemia and the regulatory activity of these plant extracts on insulin secretion through Muscarinic receptors.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The impact of simultaneous environmental stresses on plants and how they respond to combined stresses compared with single stresses is largely unclear. By using a transgene (RD29A-LUC) consisting of the firefly luciferase coding sequence (LUC) driven by the stress-responsive RD29A promoter, we investigated the interactive effects of temperature, osmotic stress, and the phytohormone abscisic acid (ABA) in the regulation of gene expression in Arabidopsis seedlings. Results indicated that both positive and negative interactions exist among the studied stress factors in regulating gene expression. At a normal growth temperature (22°C), osmotic stress and ABA act synergistically to induce the transgene expression. Low temperature inhibits the response to osmotic stress or to combined treatment of osmotic stress and ABA, whereas low temperature and ABA treatments are additive in inducing transgene expression. Although high temperature alone does not activate the transgene, it significantly amplifies the effects of ABA and osmotic stress. The effect of multiple stresses in the regulation of RD29A-LUC expression in signal transduction mutants was also studied. The results are discussed in the context of cold and osmotic stress signal transduction pathways.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Plant genomes are extremely complex. Myriad factors contribute to their evolution and organization, as well as to the expression and regulation of individual genes. Here we present investigations into several such factors and their influence on genome structure and gene expression: the arrangement of pairs of physically adjacent genes, retrotransposons closely associated with genes, and the effect of retrotransposons on gene pair evolution. All sequenced plant genomes contain a significant fraction of retrotransposons, including that of rice. We investigated the effects of retrotransposons within rice genes and within a 1 kb putative promoter region upstream of each gene. We found that approximately one-sixth of all rice genes are closely associated with retrotransposons. Insertions within a gene’s promoter region tend to block gene expression, while retrotransposons within genes promote the existence of alternative splicing forms. We also identified several other trends in retrotransposon insertion and its effects on gene expression. Several studies have previously noted a connection among genes between physical proximity and correlated expression profiles. To determine the degree to which this correlation depends on an exact physical arrangement, we studied the expression and interspecies conservation of convergent and divergent gene pairs in rice, Arabidopsis, and Populus trichocarpa. Correlated expression among gene pairs was quite common in all three species, yet conserved arrangement was rare. However, conservation of gene pair arrangement was significantly more common among pairs with strongly correlated expression levels. In order to uncover additional properties of gene pair conservation and rearrangement, we performed a comparative analysis of convergent, divergent, and tandem gene pairs in rice, sorghum, maize, and Brachypodium. We noted considerable differences between gene pair types and species. We also constructed a putative evolutionary history for each pair, which led to several interesting discoveries. To further elucidate the causes of gene pair conservation and rearrangement, we identified retrotransposon insertions in and near rice gene pairs. Retrotransposon-associated pairs are less likely to be conserved, although there are significant differences in the possible effect of different types and locations of retrotransposon insertions. The three types of gene pair also varied in their susceptibility to retrotransposon-associated evolutionary changes.