971 resultados para Gas exchange


Relevância:

60.00% 60.00%

Publicador:

Resumo:

Efecto del heliox sobre la resistencia en la vía área en niños con patología bronquial obstructiva que requieren ventilación mecánica Contreras, MA; Angarita, D; Fernandez, J; Godoy, J; Mullet, H; Briceño, G. Resumen: Los pacientes con enfermedad bronquial obstructiva que requieren ventilación mecánica presentan un aumento en la resistencia de la vía aérea que produce efectos deletéreos sobre la mecánica respiratoria. El uso de Heliox ha sido propuesto como una terapia en patología bronquial obstructiva, ya que gracias a sus propiedades físicas disminuye la resistencia en la vía aérea, mejorando el intercambio gaseoso y reduciendo el tiempo de soporte ventilatorio. El objetivo de este estudio Cuasi-experimental, fue medir y comparar antes y después la resistencia de la vía aérea en niños con patología bronquial obstructiva en quienes se usó Heliox durante la ventilación mecánica. Métodos: Se incluyeron niños que requirieron ventilación mecánica, realizando mediciones de la resistencia inspiratoria y espiratoria de la vía aérea con el ventilador Hamilton G5. Las mediciones fueron realizadas antes y desde los 30 minutos del inicio de la ventilación mecánica, hasta lograr extubación. Para el análisis de las diferencias de todas las medidas se usó la prueba de comparaciones múltiples de Friedman y el coeficiente concordancia de Kendall. Resultados: En una muestra de 17 pacientes, se encontró una disminución con significancia estadística, en las mediciones de la resistencia inspiratoria y espiratoria, a partir de la segunda hora (p 0.0004), después del inicio de la ventilación mecánica con heliox, efecto que mantuvo hasta el momento de la extubación.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Onion (Allium cepa) was grown in the field within temperature gradient tunnels (providing about -2.5degreesC to +2.5degreesC from outside temperatures) maintained at either 374 or 532 mumol mol(-1) CO2. Plant leaf area was determined non-destructively at 7 day intervals until the time of bulbing in 12 combinations of temperature and CO2 concentration. Gas exchange was measured in each plot at the time of bulbing, and the carbohydrate content of the leaf (source) and bulb (sink) was determined. Maximum rate of leaf area expansion increased with mean temperature. Leaf area duration and maximum rate of leaf area expansion were not significantly affected by CO2. The light-saturated rates of leaf photosynthesis (A(sat)) were greater in plants grown at normal than at elevated CO2 concentrations at the same measurement CO2 concentration. Acclimation of photosynthesis decreased with an increase in growth temperature, and with an increase in leaf nitrogen content at elevated CO2. The ratio of intercellular to atmospheric CO2 (C-i/C-a ratio) was 7.4% less for plants grown at elevated compared with normal CO2. A(sat) in plants grown at elevated CO2 was less than in plants grown at normal CO2 when compared at the same C-i Hence, acclimation of photosynthesis was due both to stomatal acclimation and to limitations to biochemical CO2 fixation. Carbohydrate content of the onion bulbs was greater at elevated than at normal CO2. In contrast, carbohydrate content was less at elevated compared with normal CO2 in the leaf sections in which CO2 exchange was measured at the same developmental stage. Therefore, acclimation of photosynthesis in fully expanded onion leaves was detected despite the absence of localised carbohydrate accumulation in these field-grown crops.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Onion (Allium cepa) was grown in the field within temperature gradient tunnels (providing about -2.5 degrees C to +2.5 degrees C from outside temperatures) maintained at either 374 or 532 mumol mol (-1) CO2. Plant leaf area was determined non-destructively at 7 day intervals until the time of bulbing in 12 combinations of temperature and CO2 concentration. Gas exchange was measured in each plot at the time of bulbing, and the carbohydrate content of the leaf (source) and bulb (sink) was determined. Maximum rate of leaf area expansion increased with mean temperature. Leaf area duration and maximum rate of leaf area expansion were not significantly affected by CO2. The light-saturated rates of leaf photosynthesis (A(sat)) were greater in plants grown at normal than at elevated CO2 concentrations at the same measurement CO2 concentration. Acclimation of photosynthesis decreased with an increase in growth temperature, and with an increase in leaf nitrogen content at elevated CO2. The ratio of intercellular to atmospheric CO2 (C-i/C-a ratio) was 7.4% less for plants grown at elevated compared with normal CO2. A(sat) in plants grown at elevated CO2 was less than in plants grown at normal CO2 when compared at the same C-i Hence, acclimation of photosynthesis was due both to stomatal acclimation and to limitations to biochemical CO2 fixation. Carbohydrate content of the onion bulbs was greater at elevated than at normal CO2. In contrast, carbohydrate content was less at elevated compared with normal CO2 in the leaf sections in which CO2 exchange was measured at the same developmental stage. Therefore, acclimation of photosynthesis in fully expanded onion leaves was detected despite the absence of localised carbohydrate accumulation in these field-grown crops.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Coupled photosynthesisâstomatal conductance (Aâgs) models are commonly used in ecosystem models to represent the exchange rate of CO2 and H2O between vegetation and the atmosphere. The ways these models account for water stress differ greatly among modelling schemes. This study provides insight into the impact of contrasting model configurations of water stress on the simulated leaf-level values of net photosynthesis (A), stomatal conductance (gs), the functional relationship among them and their ratio, the intrinsic water use efficiency (A/gs), as soil dries. A simple, yet versatile, normalized soil moisture dependent function was used to account for the effects of water stress on gs, on mesophyll conductance (gm) and on the biochemical capacity. Model output was compared to leaf-level values obtained from the literature. The sensitivity analyses emphasized the necessity to combine both stomatal and non-stomatal limitations of A in coupled Aâgs models to accurately capture the observed functional relationships A vs. gs and A/gsvs. gs in response to drought. Accounting for water stress in coupled Aâgs models by imposing either stomatal or biochemical limitations of A, as commonly practiced in most ecosystem models, failed to reproduce the observed functional relationship between key leaf gas exchange attributes. A quantitative limitation analysis revealed that the general pattern of C3 photosynthetic response to water stress may be well represented in coupled Aâgs models by imposing the highest limitation strength to gm, then to gs and finally to the biochemical capacity.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The photosynthetic characteristics of eight contrasting cocoa genotypes were studied with the aim of examining genotypic variation in maximum (light-saturated) photosynthetic rates, light-response curve parameters and water use efficiency. Photosynthetic traits were derived from single leaf gas exchange measurements using a portable infra-red gas analyser. All measurements were conducted in a common greenhouse environment. Significant variation was observed in light-saturated photosynthesis ranging from 3.4 to 5.7 µmol CO2 m-2 s-1 for the clones IMC 47 and SCA 6, respectively. Furthermore, analyses of photosynthetic light response curves indicated genotypic differences in light saturation point and quantum efficiency (i.e. the efficiency of light use). Stomatal conductance was a significant factor underlying genotypic differences in assimilation. Genotypic variation was also observed in a number of leaf traits, including specific leaf area (the ratio of leaf area to leaf weight), chlorophyll concentration and nitrogen content. There was a positive correlation between leaf nitrogen per unit area and light-saturated photosynthesis. Water use efficiency, defined as the ratio of photosynthetic rate to transpiration rate, also varied significantly between clones (ranging from 3.1 mmol mol-1 H2O for the clone IMC 47 to 4.2 mmol mol-1 H2O for the clone ICS 1). Water use efficiency was a negative function of specific leaf area, suggesting that low specific leaf area might be a useful criterion for selection for increased water use efficiency. It is concluded that both variation in water use efficiency and the photosynthetic response to light have the potential to be exploited in breeding programmes.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Thermal imaging is a valuable tool for the elucidation of gas exchange dynamics between a plant and its environment. The presence of stomata in wheat glumes and awns offers an opportunity to assess photosynthetic activity of ears up to and during flowering. The knowledge of spatial and temporal thermodynamics of the wheat ear may provide insight into interactions between floret developmental stage (FDS), temperature depression (TD) and ambient environment, with potential to be used as a high-throughput screening tool for breeders. A controlled environment study was conducted using six spring wheat (Triticum aestivum L.) genotypes of the elite recombinant inbred line Seri/Babax. Average ear temperature (AET) was recorded using a hand held infrared camera and gas exchange was measured by enclosing ears in a custom built cuvette. FDS was monitored and recorded daily throughout the study. Plants were grown in pots and exposed to a combination of two temperature and two water regimes. In the examined wheat lines, TD varied from 0.1°C to 0.6°C according to the level of stress imposed. The results indicated that TD does not occur at FDS F3, the peak of active flowering, but during the preceding stages prior to pollen release and stigma maturity (F1-F2). These findings suggest that ear temperature during the early stages of anthesis, prior to pollen release and full extension of the stigma, are likely to be the most relevant for identifying heat stress tolerant genotypes.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Tibouchina pulchra saplings were exposed to carbon filtered air (CF), ambient non-filtered air (NF) and ambient non-filtered air + 40 ppb ozone (NF + O-3) 8 h per day during two months. The AOT40 values at the end of the experiment were 48, 910 and 12,895 ppb h(-1), respectively, for the three treatments. After 25 days of exposure (AOT40=3871 ppb h(-1)), interveinal red stippling appeared in plants in the NF + O-3 chamber. In the NF chamber, symptoms were observed only after 60 days of exposure (AOT40 = 910 ppb h(-1)). After 60 days, injured leaves per plant corresponded to 19% in NF + O-3 and 1% in the NF treatment; and the average leaf area injured was 7% within the NF + O-3 and 0.2% within the NF treatment. The extent of leaf area injured (leaf injury index) was mostly explained by the accumulated exposure of ozone (r(2) = 0.89; p < 0.05). (C) 2007 Elsevier Ltd. All rights reserved.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Leaves comprise most of the vegetative body of tank bromeliads and are usually subjected to strong longitudinal gradients. For instance, while the leaf base is in contact with the water accumulated in the tank, the more light-exposed middle and upper leaf sections have no direct access to this water reservoir. Therefore, the present study attempted to investigate whether different leaf portions of Guzmania monostachia, a tank-forming C(3)-CAM bromeliad, play distinct physiological roles in response to water shortage, which is a major abiotic constraint in the epiphytic habitat. Internal and external morphological features, relative water content, pigment composition and the degree of CAM expression were evaluated in basal, middle and apical leaf portions in order to allow the establishment of correlations between the structure and the functional importance of each leaf region. Results indicated that besides marked structural differences, a high level of functional specialization is also present along the leaves of this bromeliad. When the tank water was depleted, the abundant hydrenchyma of basal leaf portions was the main reservoir for maintaining a stable water status in the photosynthetic tissues of the apical region. In contrast, the CAM pathway was intensified specifically in the upper leaf section, which is in agreement with the presence of features more suitable for the occurrence of photosynthesis at this portion. Gas exchange data indicated that internal recycling of respiratory CO(2) accounted for virtually all nighttime acid accumulation, characterizing a typical CAM-idling pathway in the drought-exposed plants. Altogether, these data reveal a remarkable physiological complexity along the leaves of G. monostachia, which might be a key adaptation to the intermittent water supply of the epiphytic niche. (C) 2009 Elsevier GmbH. All rights reserved.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The use of the spin of the electron as the ultimate logic bit-in what has been dubbed spintronics-can lead to a novel way of thinking about information flow. At the same time single-layer graphene has been the subject of intense research due to its potential application in nanoscale electronics. While defects can significantly alter the electronic properties of nanoscopic systems, the lack of control can lead to seemingly deleterious effects arising from the random arrangement of such impurities. Here we demonstrate, using ab initio density functional theory and non-equilibrium Green`s functions calculations, that it is possible to obtain perfect spin selectivity in doped graphene nanoribbons to produce a perfect spin filter. We show that initially unpolarized electrons entering the system give rise to 100% polarization of the current due to random disorder. This effect is explained in terms of different localization lengths for each spin channel which leads to a new mechanism for the spin filtering effect that is disorder-driven.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

This paper presents experimental and computational results obtained on the Ford Barra 190 4.0 litres I6 gasoline engine and on the Ford Falcon car equipped with this engine. Measurements of steady engine performance, fuel consumption and exhaust emissions were first collected using an automated test facility for a wide range of cam and spark timings vs. throttle position and engine speed. Simulations were performed for a significant number of measured operating points at full and part load by using a coupled Gamma Technologies GT-POWER/GT-COOL engine model for gas exchange, combustion and heat transfer. The fluid model was made up of intake and exhaust systems, oil circuit, coolant circuit and radiator cooling air circuit. The thermal model was made up of finite element components for cylinder head, cylinder, piston, valves and ports and wall thermal masses for pipes. The model was validated versus measured steady state air and fuel flow rates, cylinder pressure parameters, indicated and brake mean effective pressures, and temperature of metal, oil and coolant in selected locations. Computational results agree well with experiments, demonstrating the ability of the approach to produce fairly accurate steady state maps of BMEP and BSFC, as well as to optimize engine operation changing geometry, throttle position, cam and spark timing. Measurements of the transient performance and fuel consumption of the full vehicle were then collected over the NEDC cycle. Simulations were performed by using a coupled Gamma Technologies GT-POWER/GT-COOL/GT-DRIVE model for instantaneous engine gas exchange, combustion and heat transfer and vehicle motion. The full vehicle model is made up of transmission, driveshaft, axles, and car components and the previous engine model. The model was validated with measured fuel flow rates through the engine, engine throttle position, and engine speed and oil and coolant temperatures in selected locations. Instantaneous engine states following a time dependent demand for torque and speed differ from those obtained by interpolating steady state maps of BSFC vs. BMEP and speed. Computational results agree well with experiments, demonstrating the utility of the approach in providing a more accurate prediction of the fuel consumption over test cycles. <br />

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Alkalosis enhances human exercise performance, and reduces K<sup>+</sup> loss in contracting rat muscle. We investigated alkalosis effects on K<sup>+</sup> regulation, ionic regulation and fatigue during intense exercise in nine untrained volunteers. Concentric finger flexions were conducted at 75% peak work rate (-3 W) until fatigue, under alkalosis (Alk, NaHCO<sub>3</sub>, 0.3 g kg<sup>&minus;1</sup>) and control (Con, CaCO<sub>3</sub>) conditions, 1 month apart in a randomised, double-blind, crossover design. Deep antecubital venous (v) and radial arterial (a) blood was drawn at rest, during exercise and recovery, to determine arterio-venous differences for electrolytes, fluid shifts, acid&ndash;base and gas exchange. Finger flexion exercise barely perturbed arterial plasma ions and acid&ndash;base status, but induced marked arterio-venous changes. Alk elevated [HCO<sub>3</sub><sup>&minus;</sup>] and <i>P<sup>CO2</sup></i>, and lowered [H+] (<i>P</i> &lt; 0.05). Time to fatigue increased substantially during Alk (25 &plusmn; 8%, <i>P</i> &lt; 0.05), whilst both [K<sup>+</sup>]<sub>a</sub> and [K<sup>+</sup>]<sub>v</sub> were reduced (<i>P</i> &lt; 0.01) and [K<sup>+</sup>]<sub>a-v</sub> during exercise tended to be greater (<i>P</i>= 0.056, <i>n</i>= 8). Muscle K<sup>+</sup> efflux at fatigue was greater in Alk (21.2 &plusmn; 7.6 &micro;mol min<sup>&minus;1</sup>, 32 &plusmn; 7%, <i>P</i> &lt; 0.05, <i>n</i>= 6), but peak K<sup>+</sup> uptake rate was elevated during recovery (15 &plusmn; 7%, <i>P</i> &lt; 0.05) suggesting increased muscle Na<sup>+</sup>,K<sup>+-</sup>ATPase activity. Alk induced greater [Na<sup>+</sup>]<sub>a</sub>, [Cl<sup>&minus;</sup>]<sub>v</sub>, muscle Cl<sup>&minus;</sup> influx and muscle lactate concentration ([Lac<sup>&minus;</sup>]) efflux during exercise and recovery (<i>P</i> &lt; 0.05). The lower circulating [K<sup>+</sup>] and greater muscle K<sup>+</sup> uptake, Na<sup>+</sup> delivery and Cl<sup>&minus;</sup> uptake with Alk, are all consistent with preservation of membrane excitability during exercise. This suggests that lesser exercise-induced membrane depolarization may be an important mechanism underlying enhanced exercise performance with Alk. Thus Alk was associated with improved regulation of K<sup>+</sup>, Na<sup>+</sup>, Cl<sup>&minus;</sup> and Lac<sup>&minus;</sup>.<br />

Relevância:

60.00% 60.00%

Publicador:

Resumo:

We studied the energy and protein balance of a Thrush Nightingale Luscinia luscinia, a small long-distance migrant, during repeated 12-hr long flights in a wind tunnel and during subsequent two-day fueling periods. From the energy budgets we estimated the power requirements for migratory flight in this 26 g bird at 1.91 Watts. This is low compared to flight cost estimates in birds of similar mass and with similar wing shape. This suggests that power requirements for migratory flight are lower than the power requirements for nonmigratory flight. From excreta production during flight, and nitrogen and energy balance during subsequent fueling, the dry protein proportion of stores was estimated to be around 10%. A net catabolism of protein during migratory flight along with that of fat may reflect a physiologically inevitable process, a means of providing extra water to counteract dehydration, a production of uric acid for anti-oxidative purposes, and adaptive changes in the size of flight muscles and digestive organs in the exercising animal.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The relationship between mass loss rate and chemical power in flying birds is analysed with regard to water and heat balance. Two models are presented: the first model is applicable to situations where heat loads are moderate. i.e. when heat balance can be achieved by regulating non-evaporative heat loss, and evaporative water loss is minimised. The second model is applicable when heat loads are high, non-evaporative heat loss is maximised. and heat balance has to be achieved by regulating evaporative heat loss. The rates of mass loss of two Thrush Nightingales Luscinia luscinia and one Teal Anas crecca were measured at various flight speeds in a wind tunnel. Estimates of metabolic water production indicate that the Thrush Nightingales did not dehydrate during experimental flights. Probably, the Thrush Nightingales maintained heat balance without actively increasing evaporative cooling. The Teal, however, most likely had to resort to evaporative cooling, although it may not have dehydrated. Chemical power was estimated from our mass loss rate data using the minimum evaporation model for the Thrush Nightingales and the evaporative heat regulation model for the Teal. For both Thrush Nightingales and the Teal, the chemical power calculated from our mass loss rate data showed a greater change with speed (more 'U-shaped' curve) than the theoretically predicted chemical power curves based on aerodynamic theory. The minimum power speeds calculated from our data differed little from theoretical predictions but maximum range speeds were drastically different. Mass loss rate could potentially be used to estimate chemical power in flying birds under laboratory conditions where temperature and humidity are controlled. However, the assumptions made in the models and the model predictions need further testing.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Objetivo: Avaliar os efeitos de um programa de exercício aeróbio sobre o condicionamento cardiorrespiratório em gestantes hígidas, de baixo risco, com sobrepeso. Métodos: 92 mulheres gestantes com sobrepeso (índice de massa corporal 26-31kg/m2), idade ⥠20 anos, idade gestacional ⤠20 semanas, com ausência de diabetes e hipertensão, foram alocadas aleatoriamente para realizar exercício aeróbio três vezes por semana com uma hora de duração ou para realizar sessões de relaxamento no grupo controle. Foram realizados dois testes de exercício submáximo em esteira, utilizando protocolo de rampa na entrada do estudo e outro teste após 12 semanas. Resultados: Em teste de exercício submáximo 12 semanas após randomização, o consumo de oxigênio (VO2) no limiar anaeróbio aumentou 17% (± 3) no grupo intervenção enquanto reduziu 16% (± 3) no grupo controle, de modo que após 12 semanas de exercício ajustado através da análise de covariância pelo o VO2 no limiar na linha de base, idade gestacional e idade materna foi de 2,68ml/kg/min (IC 95% 1,32-4,03) maior, P = 0,002. Conclusão: Exercício aeróbio realizado em gestantes com sobrepeso produz um aumento no limiar anaeróbio, sobrepondo os efeitos negativos da gestação sobre o condicionamento cardiorrespiratório em mulheres com estilo de vida sedentário.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

O conhecimento dos riscos e conseqüências da lesão pulmonar induzida pela ventilação mecânica mudou a filosofia da terapia respiratória e tem influenciado nas recomendações e padronizações de seu uso. A influência dos diferentes modos ventilatórios não tem sido estudada em transplante de pulmão. O presente estudo teve como objetivo comparar a influência da ventilação controlada a volume (VCV) com a ventilação controlada a pressão (PCV) no desempenho funcional dos enxertos pulmonares, em modelo canino de transplante pulmonar unilateral utilizando-se doadores após três horas de parada cardiocirculatória. Quinze cães foram randomizados em dois grupos: oito cães foram alocados para o Grupo VCV e sete cães para o Grupo PCV. Cinco cães não completaram o período de avaliação pós-transplante, os dez animais restantes, grupo VCV (n= 5) e grupo PCV (n=5), foram avaliados durante 360 min após o término do transplante pulmonar. O desempenho funcional dos enxertos foi estudado através da avaliação da mecânica respiratória, trocas gasosas e das alterações histopatológicas. Não foram encontradas diferenças significativas em nenhuma das variáveis da mecânica respiratória estudadas (pressões de pico inspiratória- PPI; pressões de platô- PPLAT ; pressões médias de vias aéreas â Pmédia; complacências dinâmica- Cdyn e estática- Cst); da oxigenação, pressão parcial de oxigênio no sangue arterial e venoso misto (PaO2, PvO2); a diferença entre a saturação da hemoglobina no sangue arterial e no sangue venoso misto (ÎSO2); a pressão parcial de dióxido de carbono no sangue arterial e no sangue venoso misto (PaCO2, PvO2). As alterações histopatológicas encontradas nos pulmões dos animais foram compatíveis com o padrão de lesão pulmonar aguda. As alterações histológicas de padrão inespecífico não tiveram nenhuma correlação com o modo ventilatório. Este estudo demonstra que os modos ventilatórios estudados não influenciam as respostas dos enxertos pulmonares à lesão de isquemia reperfusão que se estabelece precocemente neste modelo experimental até 6 horas de reperfusão pulmonar pós-transplante unilateral.