927 resultados para Gadolinium Anomaly
Resumo:
The paper describes the clinical and pathological characteristics of an unusual cystic congenital cardiac anomaly that caused clinical signs of congestive heart failure, respiratory distress and cardiac arrhythmias in two West Highland white terrier puppies. In both dogs a definitive diagnosis was made postmortem.
Resumo:
OBJECTIVE: The purposes of this study were to use delayed gadolinium-enhanced MRI of cartilage (dGEMRIC) to evaluate the zonal distribution of glycosaminoglycans (GAGs) in normal cartilage and repair tissue and to use 3-T MRI to monitor the GAG content in matrix-associated autologous chondrocyte transplants. SUBJECTS AND METHODS: Fifteen patients who underwent matrix-associated autologous chondrocyte transplantation in the knee joint underwent MRI at baseline and 3-T follow-up MRI 1 year later. Total and zonal changes in longitudinal relaxivity (deltaR1) and relative deltaR1 were calculated for repair tissue and normal hyaline cartilage and compared by use of analysis of variance. RESULTS: There was a significant difference between the mean deltaR1 of repair tissue and that of reference cartilage at baseline and follow-up (p < 0.001). There was a significant increase in deltaR1 value and a decrease in GAG content from the deep layer to the superficial layer in the reference cartilage and almost no variation and significantly higher values for the repair tissue at both examinations. At 1-year follow-up imaging, there was a 22.7% decrease in deltaR1 value in the deep zone of the transplant. CONCLUSION: T1 mapping with dGEMRIC at 3 T shows the zonal structure of normal hyaline cartilage, highly reduced zonal variations in repair tissue, and a tendency toward an increase in global and zonal GAG content 1 year after transplantation.
Resumo:
The purpose was to evaluate the relative glycosaminoglycan (GAG) content of repair tissue in patients after microfracturing (MFX) and matrix-associated autologous chondrocyte transplantation (MACT) of the knee joint with a dGEMRIC technique based on a newly developed short 3D-GRE sequence with two flip angle excitation pulses. Twenty patients treated with MFX or MACT (ten in each group) were enrolled. For comparability, patients from each group were matched by age (MFX: 37.1 +/- 16.3 years; MACT: 37.4 +/- 8.2 years) and postoperative interval (MFX: 33.0 +/- 17.3 months; MACT: 32.0 +/- 17.2 months). The Delta relaxation rate (DeltaR1) for repair tissue and normal hyaline cartilage and the relative DeltaR1 were calculated, and mean values were compared between both groups using an analysis of variance. The mean DeltaR1 for MFX was 1.07 +/- 0.34 versus 0.32 +/- 0.20 at the intact control site, and for MACT, 1.90 +/- 0.49 compared to 0.87 +/- 0.44, which resulted in a relative DeltaR1 of 3.39 for MFX and 2.18 for MACT. The difference between the cartilage repair groups was statistically significant. The new dGEMRIC technique based on dual flip angle excitation pulses showed higher GAG content in patients after MACT compared to MFX at the same postoperative interval and allowed reducing the data acquisition time to 4 min.
Resumo:
The delayed Gadolinium Enhanced MRI of Cartilage (dGEMRIC) technique has shown promising results in pilot clinical studies of early osteoarthritis. Currently, its broader acceptance is limited by the long scan time and the need for postprocessing to calculate the T1 maps. A fast T1 mapping imaging technique based on two spoiled gradient echo images was implemented. In phantom studies, an appropriate flip angle combination optimized for center T1 of 756 to 955 ms yielded excellent agreement with T1 measured using the inversion recovery technique in the range of 200 to 900 ms, of interest in normal and diseased cartilage. In vivo validation was performed by serially imaging 26 hips using the inversion recovery and the Fast 2 angle T1 mapping techniques (center T1 756 ms). Excellent correlation with Pearson correlation coefficient R2 of 0.74 was seen and Bland-Altman plots demonstrated no systematic bias.
Resumo:
Double fenestration of the anterior communicating artery (ACoA) complex associated with an aneurysm is a very rare finding and is usually caused by ACoA duplication and the presence of a median artery of the corpus callosum (MACC). We present a patient in whom double fenestration was not associated with ACoA duplication or even with MACC, representing therefore, a previously unreported anatomic variation. A 43 year old woman experienced sudden headache and the CT scans showed subarachnoid haemorrhage (SAH). On admission, her clinical condition was consistent with Hunt and Hess grade II. Conventional digital subtraction angiography (DSA) was performed and revealed multiple intracranial aneurysms arising from both middle cerebral arteries (MCA) and from the ACoA. Three-dimensional rotational angiography (3D-RA) disclosed a double fenestration of the ACoA complex which was missed by DSA. The patient underwent a classic pterional approach in order to achieve occlusion of both left MCA and ACoA aneurysms by surgical clipping. The post-operative period was uneventful. A rare anatomical variation characterised by a double fenestration not associated with ACoA duplication or MACC is described. The DSA images missed the double fenestration which was disclosed by 3D-RA, indicating the importance of 3D-RA in the diagnosis and surgical planning of intracranial aneurysms.
Resumo:
The research reported in this dissertation investigates the impact of grain boundaries, film interface, and crystallographic orientation on the ionic conductivity of thin film Gd-doped CeO2 (GDC). Chapter 2 of this work addresses claims in the literature that submicron grain boundaries have the potential to dramatically increase the ionic conductivity of GDC films. Unambiguous testing of this claim requires directly comparing the ionic conductivity of single-crystal GDC films to films that are identical except for the presence of submicron grain boundaries. In this work techniques have been developed to grow GDC films by RF magnetron sputtering from a GDC target on single crystal r plane sapphire substrates. These techniques allow the growth of films that are single crystals or polycrystalline with 80 nm diameter grains. The ionic conductivities of these films have been measured and the data shows that the ionic conductivity of single crystal GDC is greater than that of the polycrystalline films by more than a factor of 4 over the 400-700°C temperature range. Chapter 3 of this work investigates the ionic conductivity of surface and interface regions of thin film Gd-doped CeO2. In this study, single crystal GDC films have been grown to thicknesses varying from 20 to 500 nm and their conductivities have been measured in the 500-700°C temperature range. Decreasing conductivity with decreasing film thickness was observed. Analysis of the conductivity data is consistent with the presence of an approximately 50 nm layer of less conductive material in every film. This study concludes that the surface and interface regions of thin film GDC are less conductive than the bulk single crystal regions, rather than being highly conductive paths. Chapter 4 of this work investigates the ionic conductivity of thin film Gd-doped CeO2 (GDC) as a function of crystallographic orientation. A theoretical expression has been developed for the ionic conductivity of the [100] and [110] directions in single crystal GDC. This relationship is compared to experimental data collected from a single crystal GDC film. The film was grown to a thickness of _300 nm and its conductivity measured along the [100] and [110] orientations in the 500-700°C temperature range. The experimental data shows no statistically significant difference in the conductivities of the [100] and [110] directions in single crystal GDC. This result agrees with the theoretical model which predicts no difference between the conductivities of the two directions.
Resumo:
PURPOSE: To prospectively quantify in vitro the influence of gadopentetate dimeglumine and ioversol on the magnetic resonance (MR) imaging signal observed with a variety of musculoskeletal pulse sequences to predict optimum gadolinium concentrations for direct MR arthrography at 1.5 and 3.0 T. MATERIALS AND METHODS: In an in vitro study, T1 and T2 relaxation times of three dilution series of gadopentetate dimeglumine (concentration, 0-20.0 mmol gadolinium per liter) at ioversol concentrations with iodine concentration of 0, 236.4, and 1182 mmol iodine per liter (corresponding to 0, 30, and 150 mg of iodine per milliliter) were measured at 1.5 and 3.0 T. The relaxation rate dependence on concentrations of gadolinium and iodine was analytically modeled, and continuous profiles of signal versus gadolinium concentration were calculated for 10 pulse sequences used in current musculoskeletal imaging. After fitting to experimental discrete profiles, maximum signal-to-noise ratio (SNR), gadolinium concentration with maximum SNR, and range of gadolinium concentration with 90% of maximum SNR were derived. The overall influence of field strength and iodine concentration on these parameters was assessed by using t tests. The deviation of simulated from experimental signal-response profiles was assessed with the autocorrelation of the residuals. RESULTS: The model reproduced relaxation rates of 0.37-38.24 sec(-1), with a mean error of 4.5%. Calculated SNR profiles matched the discrete experimental profiles, with autocorrelation of the residuals divided by the mean of less than 5.0. Admixture of ioversol consistently reduced T1 and T2, narrowed optimum gadolinium concentration ranges (P = .004-.006), and reduced maximum SNR (P < .001 to not significant). Optimum gadolinium concentration was 0.7-3.4 mmol/L at both field strengths. At 3.0 T, maximum SNR was up to 75% higher than at 1.5 T. CONCLUSION: Admixture of ioversol to gadopentetate dimeglumine solutions results in a consistent additional relaxation enhancement, which can be analytically modeled to allow a near-quantitative a priori optimized match of contrast media concentrations and imaging protocol for a broad variety of pulse sequences.
Resumo:
OBJECTIVES: To study the three-dimensional (3D) T1 patterns in different types of femoroacetabular impingement (FAI) by utilizing delayed gadolinium-enhanced magnetic resonance imaging (MRI) of cartilage (dGEMRIC) and subsequent 3D T1 mapping. We used standard grading of OA by Tonnis grade on standard radiographs and morphological grading of cartilage in MRI for comparative analysis. METHODS: dGEMRIC was obtained from ten asymptomatic young-adult volunteers and 26 symptomatic FAI patients. MRI included the routine hip protocol and a dual-flip angle (FA) 3D gradient echo (GRE) sequence utilizing inline T1 measurement. Cartilage was morphologically classified from the radial images based on the extent of degeneration as: no degeneration, degeneration zone measuring <0.75 cm from the rim, >0.75 cm, or total loss. T1 findings were evaluated and correlated. RESULTS: All FAI types revealed remarkably lower T1 mean values in comparison to asymptomatic volunteers in all regions of interest. Distribution of the T1 dGEMRIC values was in accordance with the specific FAI damage pattern. In cam-types (n=6) there was a significant drop (P<0.05) of T1 in the anterior to superior location. In pincer-types (n=7), there was a generalized circumferential decrease noted. High inter-observer (intra-observer) reliability was noted for T1 assessment using intra-class correlation (ICC):intra-class coefficient=0.89 (0.95). CONCLUSIONS: We conclude that a pattern of zonal T1 variation does seem to exist that is unique for different sub-groups of FAI. The FA GRE approach to perform 3D T1 mapping has a promising role for further studies of standard MRI and dGEMRIC in the hip joint.
Resumo:
The purpose of this study was to assess if delayed gadolinium MRI of cartilage using postcontrast T(1) (T(1Gd)) is sufficient for evaluating cartilage damage in femoroacetabular impingement without using noncontrast values (T(10)). T(1Gd) and DeltaR(1) (1/T(1Gd) - 1/T(10)) that include noncontrast T(1) measurements were studied in two grades of osteoarthritis and in a control group of asymptomatic young-adult volunteers. Differences between T(1Gd) and DeltaR(1) values for femoroacetabular impingement patients and volunteers were compared. There was a very high correlation between T(1Gd) and DeltaR(1) in all study groups. In the study cohort with Tonnis grade 0, correlation (r) was -0.95 and -0.89 with Tonnis grade 1 and -0.88 in asymptomatic volunteers, being statistically significant (P < 0.001) for all groups. For both T(1Gd) and DeltaR(1), a statistically significant difference was noted between patients and control group. Significant difference was also noted for both T(1Gd) and DeltaR(1) between the patients with Tonnis grade 0 osteoarthritis and those with grade 1 changes. Our results prove a linear correlation between T(1Gd) and DeltaR(1), suggesting that T(1Gd) assessment is sufficient for the clinical utility of delayed gadolinium MRI of cartilage in this setting and additional time-consuming T(10) evaluation may not be needed.