648 resultados para GULLMAR FJORD
Resumo:
During the early 2000s the Greenland Ice Sheet experienced the largest ice-mass loss of the instrumental record, largely as a result of the acceleration, thinning and retreat of large outlet glaciers in West and southeast Greenland. The quasi-simultaneous change in the glaciers suggests a common climate forcing. Increasing air and ocean temperatures have been indicated as potential triggers. Here, we present a record of calving activity of Helheim Glacier, East Greenland, that extends back to about AD 1890, based on an analysis of sedimentary deposits from Sermilik Fjord, where Helheim Glacier terminates. Specifically, we use the annual deposition of and grains as a proxy for iceberg discharge. Our record reveals large fluctuations in calving rates, but the present high rate was reproduced only in the 1930s. A comparison with climate indices indicates that high calving activity coincides with a relatively strong influence of Atlantic water and a lower influence of polar water on the shelf off Greenland, as well as with warm summers and the negative phase of the North Atlantic Oscillation. Our analysis provides evidence that Helheim Glacier responds to short-term fluctuations of large-scale oceanic and atmospheric conditions, on timescales of 3-10 years.
Kiel fjord pCO2 datasets between 2012 (July) and 2015 (January) measured using a HydroC® pCO2 sensor
Resumo:
The HydroC® CO2 sensor was deployed from a pontoon at the waterfront of the GEOMAR west shore building into Kiel Fjord, Western Baltic Sea (Kiel, Germany; 54°19'48.78"N, 010° 8'59.44"E). Since the pontoon is floating the deployment depth of the sensor was constant at 1m. Data of three deployment intervals are published here: 1) July 2012 - December 2012 2) April 2013 - June 2013 3) November 2013 - January 2015 Data are processed and corrected, for documentation and graphical overview see further details.