965 resultados para GOAL PROGRAMMING APPROACH
Resumo:
Objectives: To report the results of cochlear implantation via the middle fossa approach in 4 patients, discuss the complications, and present a detailed description of the programming specifications in these cases. Study Design: Retrospective case review. Setting: Tertiary-care referral center with a well-established cochlear implant program. Patients: Four patients with bilateral canal wall down mastoid cavities who underwent the middle fossa approach for cochlear implantation. Interventions: Cochlear implantation and subsequent rehabilitation. A middle fossa approach with cochleostomy was successfully performed on the most superficial part of the apical turn in 4 patients. A Nucleus 24 cochlear implant system was used in 3 patients and a MED-EL Sonata Medium device in 1 patient. The single electrode array was inserted through a cochleostomy from the cochlear apex and occupied the apical, middle, and basal turns. Telemetry and intraoperative impedance recordings were performed at the end of surgery. A CT scan of the temporal bones was performed to document electrode insertion for all of the patients. Main Outcome Measures: Complications, hearing thresholds, and speech perception outcomes were evaluated. Results: Neural response telemetry showed present responses in all but 1 patient, who demonstrated facial nerve stimulation during the test. Open-set speech perception varied from 30% to 100%, despite the frequency allocation order of the MAP. Conclusion: Cochlear implantation via the middle cranial fossa is a safe approach, although it is a challenging procedure, even for experienced surgeons.
Resumo:
After almost 10 years from “The Free Lunch Is Over” article, where the need to parallelize programs started to be a real and mainstream issue, a lot of stuffs did happened: • Processor manufacturers are reaching the physical limits with most of their approaches to boosting CPU performance, and are instead turning to hyperthreading and multicore architectures; • Applications are increasingly need to support concurrency; • Programming languages and systems are increasingly forced to deal well with concurrency. This thesis is an attempt to propose an overview of a paradigm that aims to properly abstract the problem of propagating data changes: Reactive Programming (RP). This paradigm proposes an asynchronous non-blocking approach to concurrency and computations, abstracting from the low-level concurrency mechanisms.
Resumo:
Master production schedule (MPS) plays an important role in an integrated production planning system. It converts the strategic planning defined in a production plan into the tactical operation execution. The MPS is also known as a tool for top management to control over manufacture resources and becomes input of the downstream planning levels such as material requirement planning (MRP) and capacity requirement planning (CRP). Hence, inappropriate decision on the MPS development may lead to infeasible execution, which ultimately causes poor delivery performance. One must ensure that the proposed MPS is valid and realistic for implementation before it is released to real manufacturing system. In practice, where production environment is stochastic in nature, the development of MPS is no longer simple task. The varying processing time, random event such as machine failure is just some of the underlying causes of uncertainty that may be hardly addressed at planning stage so that in the end the valid and realistic MPS is tough to be realized. The MPS creation problem becomes even more sophisticated as decision makers try to consider multi-objectives; minimizing inventory, maximizing customer satisfaction, and maximizing resource utilization. This study attempts to propose a methodology for MPS creation which is able to deal with those obstacles. This approach takes into account uncertainty and makes trade off among conflicting multi-objectives at the same time. It incorporates fuzzy multi-objective linear programming (FMOLP) and discrete event simulation (DES) for MPS development.
Resumo:
A framework for the automatic parallelization of (constraint) logic programs is proposed and proved correct. Intuitively, the parallelization process replaces conjunctions of literals with parallel expressions. Such expressions trigger at run-time the exploitation of restricted, goal-level, independent and-parallelism. The parallelization process performs two steps. The first one builds a conditional dependency graph (which can be implified using compile-time analysis information), while the second transforms the resulting graph into linear conditional expressions, the parallel expressions of the &-Prolog language. Several heuristic algorithms for the latter ("annotation") process are proposed and proved correct. Algorithms are also given which determine if there is any loss of parallelism in the linearization process with respect to a proposed notion of maximal parallelism. Finally, a system is presented which implements the proposed approach. The performance of the different annotation algorithms is compared experimentally in this system by studying the time spent in parallelization and the effectiveness of the results in terms of speedups.
Resumo:
This paper illustrates the use of a top-down framework to obtain goal independent analyses of logic programs, a task which is usually associated with the bottom-up approach. While it is well known that the bottomup approach can be used, through the magic set transformation, for goal dependent analysis, it is less known that the top-down approach can be used for goal independent analysis. The paper describes two ways of doing the latter. We show how the results of a goal independent analysis can be used to speed up subsequent goal dependent analyses. However this speed-up may result in a loss of precisión. The influence of domain characteristics on this precisión is discussed and an experimental evaluation using a generic top-down analyzer is described.
Resumo:
Goal independent analysis of logic programs is commonly discussed in the context of the bottom-up approach. However, while the literature is rich in descriptions of top-down analysers and their application, practical experience with bottom-up analysis is still in a preliminary stage. Moreover, the practical use of existing top-down frameworks for goal independent analysis has not been addressed in a practical system. We illustrate the efficient use of existing goal dependent, top-down frameworks for abstract interpretation in performing goal independent analyses of logic programs much the same as those usually derived from bottom-up frameworks. We present several optimizations for this flavour of top-down analysis. The approach is fully implemented within an existing top-down framework. Several implementation tradeoffs are discussed as well as the influence of domain characteristics. An experimental evaluation including a comparison with a bottom-up analysis for the domain Prop is presented. We conclude that the technique can offer advantages with respect to standard goal dependent analyses.
Resumo:
In this paper we focus on the selection of safeguards in a fuzzy risk analysis and management methodology for information systems (IS). Assets are connected by dependency relationships, and a failure of one asset may affect other assets. After computing impact and risk indicators associated with previously identified threats, we identify and apply safeguards to reduce risks in the IS by minimizing the transmission probabilities of failures throughout the asset network. However, as safeguards have associated costs, the aim is to select the safeguards that minimize costs while keeping the risk within acceptable levels. To do this, we propose a dynamic programming-based method that incorporates simulated annealing to tackle optimizations problems.
Resumo:
The operating theatres are the engine of the hospitals; proper management of the operating rooms and its staff represents a great challenge for managers and its results impact directly in the budget of the hospital. This work presents a MILP model for the efficient schedule of multiple surgeries in Operating Rooms (ORs) during a working day. This model considers multiple surgeons and ORs and different types of surgeries. Stochastic strategies are also implemented for taking into account the uncertain in surgery durations (pre-incision, incision, post-incision times). In addition, a heuristic-based methods and a MILP decomposition approach is proposed for solving large-scale ORs scheduling problems in computational efficient way. All these computer-aided strategies has been implemented in AIMMS, as an advanced modeling and optimization software, developing a user friendly solution tool for the operating room management under uncertainty.
Resumo:
Thesis (Ph.D.)--University of Washington, 2016-06
Resumo:
In this paper, we consider dynamic programming for the election timing in the majoritarian parliamentary system such as in Australia, where the government has a constitutional right to call an early election. This right can give the government an advantage to remain in power for as long as possible by calling an election, when its popularity is high. On the other hand, the opposition's natural objective is to gain power, and it will apply controls termed as "boosts" to reduce the chance of the government being re-elected by introducing policy and economic responses. In this paper, we explore equilibrium solutions to the government, and the opposition strategies in a political game using stochastic dynamic programming. Results are given in terms of the expected remaining life in power, call and boost probabilities at each time at any level of popularity.
Resumo:
In the last two decades there have been substantial developments in the mathematical theory of inverse optimization problems, and their applications have expanded greatly. In parallel, time series analysis and forecasting have become increasingly important in various fields of research such as data mining, economics, business, engineering, medicine, politics, and many others. Despite the large uses of linear programming in forecasting models there is no a single application of inverse optimization reported in the forecasting literature when the time series data is available. Thus the goal of this paper is to introduce inverse optimization into forecasting field, and to provide a streamlined approach to time series analysis and forecasting using inverse linear programming. An application has been used to demonstrate the use of inverse forecasting developed in this study. © 2007 Elsevier Ltd. All rights reserved.
Resumo:
The aim of this thesis is to examine the specific contextual factors affecting the applicability and development of the planning, programming, budgeting system (P.P.B.S.) as a systems approach to public sector budgeting. The concept of P.P.B.S. as a systems approach to public sector budgeting will first be developed and the preliminary hypothesis that general contextual factors may be classified under political, structural and cognitive headings will be put forward. This preliminary hypothesis will be developed and refined using American and early British experience. The refined hypothesis will then be tested in detail in the case of the English health and personal social services (H.P.S.S.), The reasons for this focus are that it is the most recent, the sole remaining, and the most significant example in British central government outside of defence, and is fairly representative of non-defence government programme areas. The method of data collection relies on the examination of unpublished and difficult to obtain central government, health and local authority documents, and interviews with senior civil servants and public officials. The conclusion will be that the political constraints on, or factors affecting P.P.B.S., vary with product characteristics and cultural imperatives on pluralistic decision-making; that structural constraints vary with the degree of coincidence of programme and organisation structure and with the degree of controllability of the organisation; and finally, that cognitive constraints vary according to product characteristics, organisational responsibilities, and analytical effort.
Resumo:
Dynamically adaptive systems (DASs) are intended to monitor the execution environment and then dynamically adapt their behavior in response to changing environmental conditions. The uncertainty of the execution environment is a major motivation for dynamic adaptation; it is impossible to know at development time all of the possible combinations of environmental conditions that will be encountered. To date, the work performed in requirements engineering for a DAS includes requirements monitoring and reasoning about the correctness of adaptations, where the DAS requirements are assumed to exist. This paper introduces a goal-based modeling approach to develop the requirements for a DAS, while explicitly factoring uncertainty into the process and resulting requirements. We introduce a variation of threat modeling to identify sources of uncertainty and demonstrate how the RELAX specification language can be used to specify more flexible requirements within a goal model to handle the uncertainty. © 2009 Springer Berlin Heidelberg.