905 resultados para GENERALIZED LINEAR MODEL
Resumo:
In this thesis used four different methods in order to diagnose the precipitation extremes on Northeastern Brazil (NEB): Generalized Linear Model s via logistic regression and Poisson, extreme value theory analysis via generalized extre me value (GEV) and generalized Pareto (GPD) distributions and Vectorial Generalized Linea r Models via GEV (MVLG GEV). The logistic regression and Poisson models were used to identify the interactions between the precipitation extremes and other variables based on the odds ratios and relative risks. It was found that the outgoing longwave radiation was the indicator variable for the occurrence of extreme precipitation on eastern, northern and semi arid NEB, and the relative humidity was verified on southern NEB. The GEV and GPD distribut ions (based on the 95th percentile) showed that the location and scale parameters were presented the maximum on the eastern and northern coast NEB, the GEV verified a maximum core on western of Pernambuco influenced by weather systems and topography. The GEV and GPD shape parameter, for most regions the data fitted by Weibull negative an d Beta distributions (ξ < 0) , respectively. The levels and return periods of GEV (GPD) on north ern Maranhão (centerrn of Bahia) may occur at least an extreme precipitation event excee ding over of 160.9 mm /day (192.3 mm / day) on next 30 years. The MVLG GEV model found tha t the zonal and meridional wind components, evaporation and Atlantic and Pacific se a surface temperature boost the precipitation extremes. The GEV parameters show the following results: a) location ( ), the highest value was 88.26 ± 6.42 mm on northern Maran hão; b) scale ( σ ), most regions showed positive values, except on southern of Maranhão; an d c) shape ( ξ ), most of the selected regions were adjusted by the Weibull negative distr ibution ( ξ < 0 ). The southern Maranhão and southern Bahia have greater accuracy. The level period, it was estimated that the centern of Bahia may occur at least an extreme precipitatio n event equal to or exceeding over 571.2 mm/day on next 30 years.
Resumo:
Background: Identifying biological markers to aid diagnosis of bipolar disorder (BD) is critically important. To be considered a possible biological marker, neural patterns in BD should be discriminant from those in healthy individuals (HI). We examined patterns of neuromagnetic responses revealed by magnetoencephalography (MEG) during implicit emotion-processing using emotional (happy, fearful, sad) and neutral facial expressions, in sixteen BD and sixteen age- and gender-matched healthy individuals. Methods: Neuromagnetic data were recorded using a 306-channel whole-head MEG ELEKTA Neuromag System, and preprocessed using Signal Space Separation as implemented in MaxFilter (ELEKTA). Custom Matlab programs removed EOG and ECG signals from filtered MEG data, and computed means of epoched data (0-250ms, 250-500ms, 500-750ms). A generalized linear model with three factors (individual, emotion intensity and time) compared BD and HI. A principal component analysis of normalized mean channel data in selected brain regions identified principal components that explained 95% of data variation. These components were used in a quadratic support vector machine (SVM) pattern classifier. SVM classifier performance was assessed using the leave-one-out approach. Results: BD and HI showed significantly different patterns of activation for 0-250ms within both left occipital and temporal regions, specifically for neutral facial expressions. PCA analysis revealed significant differences between BD and HI for mild fearful, happy, and sad facial expressions within 250-500ms. SVM quadratic classifier showed greatest accuracy (84%) and sensitivity (92%) for neutral faces, in left occipital regions within 500-750ms. Conclusions: MEG responses may be used in the search for disease specific neural markers.
Resumo:
A class of multi-process models is developed for collections of time indexed count data. Autocorrelation in counts is achieved with dynamic models for the natural parameter of the binomial distribution. In addition to modeling binomial time series, the framework includes dynamic models for multinomial and Poisson time series. Markov chain Monte Carlo (MCMC) and Po ́lya-Gamma data augmentation (Polson et al., 2013) are critical for fitting multi-process models of counts. To facilitate computation when the counts are high, a Gaussian approximation to the P ́olya- Gamma random variable is developed.
Three applied analyses are presented to explore the utility and versatility of the framework. The first analysis develops a model for complex dynamic behavior of themes in collections of text documents. Documents are modeled as a “bag of words”, and the multinomial distribution is used to characterize uncertainty in the vocabulary terms appearing in each document. State-space models for the natural parameters of the multinomial distribution induce autocorrelation in themes and their proportional representation in the corpus over time.
The second analysis develops a dynamic mixed membership model for Poisson counts. The model is applied to a collection of time series which record neuron level firing patterns in rhesus monkeys. The monkey is exposed to two sounds simultaneously, and Gaussian processes are used to smoothly model the time-varying rate at which the neuron’s firing pattern fluctuates between features associated with each sound in isolation.
The third analysis presents a switching dynamic generalized linear model for the time-varying home run totals of professional baseball players. The model endows each player with an age specific latent natural ability class and a performance enhancing drug (PED) use indicator. As players age, they randomly transition through a sequence of ability classes in a manner consistent with traditional aging patterns. When the performance of the player significantly deviates from the expected aging pattern, he is identified as a player whose performance is consistent with PED use.
All three models provide a mechanism for sharing information across related series locally in time. The models are fit with variations on the P ́olya-Gamma Gibbs sampler, MCMC convergence diagnostics are developed, and reproducible inference is emphasized throughout the dissertation.
Resumo:
We analyze a real data set pertaining to reindeer fecal pellet-group counts obtained from a survey conducted in a forest area in northern Sweden. In the data set, over 70% of counts are zeros, and there is high spatial correlation. We use conditionally autoregressive random effects for modeling of spatial correlation in a Poisson generalized linear mixed model (GLMM), quasi-Poisson hierarchical generalized linear model (HGLM), zero-inflated Poisson (ZIP), and hurdle models. The quasi-Poisson HGLM allows for both under- and overdispersion with excessive zeros, while the ZIP and hurdle models allow only for overdispersion. In analyzing the real data set, we see that the quasi-Poisson HGLMs can perform better than the other commonly used models, for example, ordinary Poisson HGLMs, spatial ZIP, and spatial hurdle models, and that the underdispersed Poisson HGLMs with spatial correlation fit the reindeer data best. We develop R codes for fitting these models using a unified algorithm for the HGLMs. Spatial count response with an extremely high proportion of zeros, and underdispersion can be successfully modeled using the quasi-Poisson HGLM with spatial random effects.
Resumo:
Neste estudo foi investigado como a distribuição das espécies e a produção de biomassa de macrófitas aquáticas são influenciadas pelas condições físico-químicas do ambiente. Também foi avaliado como uma espécie com maior potencial competitivo pode interferir na diversidade de espécies da comunidade macrofítica. Para tanto, em cada um dos três arroios, foram dispostos seis transecções, perpendiculares à margem. Em cada transecção foram demarcadas três unidades amostrais de 1m², nas quais foram registrados os parâmetros fitossociológicos cobertura e frequência relativas e valor de importância. A diversidade de espécies foi estimada pelo índice de Shannon, utilizando os valores de cobertura de espécies. Para determinar a biomassa das macrófitas aquáticas foram usados quadrats de 0,25m², alocados dentro da unidade amostral de 1m² usadas para quantificar os dados fitossociológicos, nos mesmos pontos onde foi feito o levantamento de cobertura da vegetação. Utilizamos como variáveis preditoras a velocidade da corrente, radiação solar incidente, coeficiente de sombreamento, vegetação ripária arbórea adjacente, nitrogênio orgânico dissolvido, carbono orgânico dissolvido e condutividade elétrica. Foram registradas 32 espécies de macrófitas aquáticas, distribuídas em 19 famílias e 28 gêneros. Conforme Análise de Correspondência Canônica (CCA), as espécies com maiores valores de biomassa foram relacionadas a unidades amostrais com alta incidência luminosa. As unidades amostrais com dominância de Pistia stratiotes apresentaram menor diversidade de espécies indicando que esta espécie, quando encontra condições que permitam sua proliferação, pode excluir espécies de menor potencial competitivo. De acordo com GLM (Generalized Linear Model), a ausência de vegetação ripária ou presente em apenas uma das margens e baixas velocidades de corrente configura-se em condições favoráveis ao estabelecimento e desenvolvimento de macrófitas aquáticas, possibilitando produção maiores valores de biomassa.
Resumo:
Breast milk is regarded as an ideal source of nutrients for the growth and development of neonates, but it can also be a potential source of pollutants. Mothers can be exposed to different contaminants as a result of their lifestyle and environmental pollution. Mercury (Hg) and arsenic (As) could adversely affect the development of fetal and neonatal nervous system. Some fish and shellfish are rich in selenium (Se), an essential trace element that forms part of several enzymes related to the detoxification process, including glutathione S-transferase (GST). The goal of this study was to determine the interaction between Hg, As and Se and analyze its effect on the activity of GST in breast milk. Milk samples were collected from women between day 7 and 10 postpartum. The GST activity was determined spectrophotometrically; total Hg, As and Se concentrations were measured by atomic absorption spectrometry. To explain the possible association of Hg, As and Se concentrations with GST activity in breast milk, generalized linear models were constructed. The model explained 44% of the GST activity measured in breast milk. The GLM suggests that GST activity was positively correlated with Hg, As and Se concentrations. The activity of the enzyme was also explained by the frequency of consumption of marine fish and shellfish in the diet of the breastfeeding women.
Resumo:
INTRODUCTION: Attaining an accurate diagnosis in the acute phase for severely brain-damaged patients presenting Disorders of Consciousness (DOC) is crucial for prognostic validity; such a diagnosis determines further medical management, in terms of therapeutic choices and end-of-life decisions. However, DOC evaluation based on validated scales, such as the Revised Coma Recovery Scale (CRS-R), can lead to an underestimation of consciousness and to frequent misdiagnoses particularly in cases of cognitive motor dissociation due to other aetiologies. The purpose of this study is to determine the clinical signs that lead to a more accurate consciousness assessment allowing more reliable outcome prediction. METHODS: From the Unit of Acute Neurorehabilitation (University Hospital, Lausanne, Switzerland) between 2011 and 2014, we enrolled 33 DOC patients with a DOC diagnosis according to the CRS-R that had been established within 28 days of brain damage. The first CRS-R assessment established the initial diagnosis of Unresponsive Wakefulness Syndrome (UWS) in 20 patients and a Minimally Consciousness State (MCS) in the remaining13 patients. We clinically evaluated the patients over time using the CRS-R scale and concurrently from the beginning with complementary clinical items of a new observational Motor Behaviour Tool (MBT). Primary endpoint was outcome at unit discharge distinguishing two main classes of patients (DOC patients having emerged from DOC and those remaining in DOC) and 6 subclasses detailing the outcome of UWS and MCS patients, respectively. Based on CRS-R and MBT scores assessed separately and jointly, statistical testing was performed in the acute phase using a non-parametric Mann-Whitney U test; longitudinal CRS-R data were modelled with a Generalized Linear Model. RESULTS: Fifty-five per cent of the UWS patients and 77% of the MCS patients had emerged from DOC. First, statistical prediction of the first CRS-R scores did not permit outcome differentiation between classes; longitudinal regression modelling of the CRS-R data identified distinct outcome evolution, but not earlier than 19 days. Second, the MBT yielded a significant outcome predictability in the acute phase (p<0.02, sensitivity>0.81). Third, a statistical comparison of the CRS-R subscales weighted by MBT became significantly predictive for DOC outcome (p<0.02). DISCUSSION: The association of MBT and CRS-R scoring improves significantly the evaluation of consciousness and the predictability of outcome in the acute phase. Subtle motor behaviour assessment provides accurate insight into the amount and the content of consciousness even in the case of cognitive motor dissociation.
Resumo:
One of the objectives of this study is to perform classification of socio-demographic components for the level of city section in City of Lisbon. In order to accomplish suitable platform for the restaurant potentiality map, the socio-demographic components were selected to produce a map of spatial clusters in accordance to restaurant suitability. Consequently, the second objective is to obtain potentiality map in terms of underestimation and overestimation in number of restaurants. To the best of our knowledge there has not been found identical methodology for the estimation of restaurant potentiality. The results were achieved with combination of SOM (Self-Organized Map) which provides a segmentation map and GAM (Generalized Additive Model) with spatial component for restaurant potentiality. Final results indicate that the highest influence in restaurant potentiality is given to tourist sites, spatial autocorrelation in terms of neighboring restaurants (spatial component), and tax value, where lower importance is given to household with 1 or 2 members and employed population, respectively. In addition, an important conclusion is that the most attractive market sites have shown no change or moderate underestimation in terms of restaurants potentiality.
Resumo:
Transferring distribution models between different geographical areas may be problematic, as the performance of models outside their original scope is hard to predict. A modelling procedure is needed that gets the gist of the environmental descriptors of a distribution area, without either overfitting to the training data or overestimating the species’ distribution potential.We tested the transferability power of the favourability function, a generalized linear model, on the distribution of the Iberian desman (Galemys pyrenaicus) in the Iberian territories of Portugal and Spain.We also tested the effects of two of the main potential constraints on model transferability: the analysed ranges of the predictor variables, and the completeness of the species distribution data. We modelled 10 km×10km presence/absence data from Portugal and Spain separately, extrapolated each model to the other country, and compared predictions with observations. The Spanish model, despite arguably containing more false absences, showed good predictive ability in Portugal. The Portuguese model, whose predictors ranged between only a subset of the values observed in Spain, overestimated desman distribution when transferred.We discuss possible reasons for this differential model behaviour, and highlight the importance of this kind of models for prediction and conservation applications
Resumo:
The total entropy utility function is considered for the dual purpose of Bayesian design for model discrimination and parameter estimation. A sequential design setting is proposed where it is shown how to efficiently estimate the total entropy utility for a wide variety of data types. Utility estimation relies on forming particle approximations to a number of intractable integrals which is afforded by the use of the sequential Monte Carlo algorithm for Bayesian inference. A number of motivating examples are considered for demonstrating the performance of total entropy in comparison to utilities for model discrimination and parameter estimation. The results suggest that the total entropy utility selects designs which are efficient under both experimental goals with little compromise in achieving either goal. As such, the total entropy utility is advocated as a general utility for Bayesian design in the presence of model uncertainty.
Resumo:
Objectives To investigate whether a sudden temperature change between neighboring days has significant impact on mortality. Methods A Poisson generalized linear regression model combined with a distributed lag non-linear models was used to estimate the association of temperature change between neighboring days with mortality in a subtropical Chinese city during 2008–2012. Temperature change was calculated as the current day’s temperature minus the previous day’s temperature. Results A significant effect of temperature change between neighboring days on mortality was observed. Temperature increase was significantly associated with elevated mortality from non-accidental and cardiovascular diseases, while temperature decrease had a protective effect on non-accidental mortality and cardiovascular mortality. Males and people aged 65 years or older appeared to be more vulnerable to the impact of temperature change. Conclusions Temperature increase between neighboring days has a significant adverse impact on mortality. Further health mitigation strategies as a response to climate change should take into account temperature variation between neighboring days.
Resumo:
Objective To discuss generalized estimating equations as an extension of generalized linear models by commenting on the paper of Ziegler and Vens "Generalized Estimating Equations. Notes on the Choice of the Working Correlation Matrix". Methods Inviting an international group of experts to comment on this paper. Results Several perspectives have been taken by the discussants. Econometricians have established parallels to the generalized method of moments (GMM). Statisticians discussed model assumptions and the aspect of missing data Applied statisticians; commented on practical aspects in data analysis. Conclusions In general, careful modeling correlation is encouraged when considering estimation efficiency and other implications, and a comparison of choosing instruments in GMM and generalized estimating equations, (GEE) would be worthwhile. Some theoretical drawbacks of GEE need to be further addressed and require careful analysis of data This particularly applies to the situation when data are missing at random.
Resumo:
We have recently developed a generalized JKR model for non-slipping adhesive contact between an elastic cylinder and a stretched substrate where both tangential and normal tractions are transmitted across the contact interface. Here we extend this model to a generalized Maugis-Dugdale model by adopting a Dugdale-type adhesive interaction law to eliminate the stress singularity near the edge of the contact zone. The non-slipping Maugis-Dugdale model is expected to have a broader range of validity in comparison with the non-slipping JKR model. The solution shares a number of common features with experimentally observed behaviors of cell reorientation on a cyclically stretched substrate.
Resumo:
Adhesive contact model between an elastic cylinder and an elastic half space is studied in the present paper, in which an external pulling force is acted on the above cylinder with an arbitrary direction and the contact width is assumed to be asymmetric with respect to the structure. Solutions to the asymmetric model are obtained and the effect of the asymmetric contact width on the whole pulling process is mainly discussed. It is found that the smaller the absolute value of Dundurs' parameter beta or the larger the pulling angle theta, the more reasonable the symmetric model would be to approximate the asymmetric one.
Resumo:
A non-linear perturbation model for river flow forecasting is developed, based on consideration of catchment wetness using an antecedent precipitation index (API). Catchment seasonality, of the form accounted for in the linear perturbation model (the LPM), and non-linear behaviour both in the runoff generation mechanism and in the flow routing processes are represented by a constrained nan-linear model, the NLPM-API. A total of ten catchments, across a range of climatic conditions and catchment area magnitudes, located in China and in other countries, were selected for testing daily rainfall-runoff forecasting with this model. It was found that the NLPM-API model was significantly more efficient than the original linear perturbation model (the LPM). However, restric tion of explicit nan-linearity to the runoff generation process, in the simpler LPM-API form of the model, did not produce a significantly lower value of the efficiency in flood forecasting, in terms of the model efficiency index R-2. (C) 1997 Elsevier Science B.V.